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Abstract

Science is a social process with far-reaching impact on our modern society. In the recent
years, for the first time we are able to scientifically study the science itself. This is
enabled by massive amounts of data on scientific publications that is increasingly
becoming available. The data is contained in several databases such as Web of Science
or PubMed, maintained by various public and private entities. Unfortunately, these
databases are not always consistent, which considerably hinders this study. Relying on
the powerful framework of complex networks, we conduct a systematic analysis of the
consistency among six major scientific databases. We found that identifying a single
“best” database is far from easy. Nevertheless, our results indicate appreciable
differences in mutual consistency of different databases, which we interpret as recipes
for future bibliometric studies.

Introduction 1

Science is a human endeavor. As such, it benefits from all virtues and suffers from all 2

paradoxes inherent to humans. Among these are the old problems of appreciating and 3

measuring research achievements [1]. When judging what is and what is not 4

scientifically interesting or important, scientists are not just subjective, but often offer 5

arguments that stem from poor understanding of the academic culture and tradition in 6

fields other than their own. In the age of Big data, science of science is emerging as an 7

attempt to scientifically examine the science itself [2, 3]. This young field has potential 8

to answer some of the oldest questions about scientific progress, such as elucidating the 9

sociological mechanisms leading to new discoveries [4–6], or establishing a platform for 10

objectively quantifying scientific impact [3, 7, 8]. These insights are also useful in 11

building realistic scenarios of future development of science and its impact on our 12

lives [5, 7, 9]. Science of science also receives attention from policy makers [10]. Indeed, 13

being able to fairly evaluate and compare scientific outputs enables the community to 14

improve the funding strategies and target them towards achievable goals. It also 15

provides a framework to quantify the research impact resulting from a given 16

investment [9]. 17

The dynamics of science is articulated through a constant influx of scientific 18

publications, primarily research papers. Appearing in a variety of journals, papers are 19

interrelated in intricate ways, governed by complex patterns of co-authorships 20

(collaborations) [11] and citations [12]. Hidden in these patterns are the answers to 21
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many pondering questions: Which papers set the new trends [13]? Can their eventual 22

impact be recognized early upon publication [14]? How does interdisciplinary research 23

arise and what are the best ways to stimulate it [15]? Extracting these answers calls for 24

new methodologies of untangling these complex patterns from scientific databases such 25

as Web of Science or arXiv. The only way to exploit the rapid growth of bibliometric 26

(scientometric) data, is to parallel it with equally rapid growth and improvement of 27

methodologies aimed at efficiently mining them. 28

In this context, the framework of networks (graphs) has been recognized as an 29

elegant tool for representing and analyzing complex systems [16,17]. In a variety of 30

fields ranging from computer science and physics to sociology and biology, this approach 31

has provided paradigm-shifting results [18, 19]. In particular, scientific databases can be 32

represented as complex networks by identifying publications or authors as network 33

nodes and modeling their bibliometric relationships as network links [11, 20]. Relying on 34

this paradigm, intense research efforts over the last decade provided novel quantitative 35

findings on dynamics and evolution of science. Besides being suited for analyzing the 36

emergence of interdisciplinarity [21], this framework gave insights into new ways of 37

estimating scientific impact [14, 22], opened a window into the communities among 38

scientists [23, 24], or enabled novel approaches to study the evolution of science [25, 26]. 39

However, despite promising results and increasing availability of data, the core 40

obstacle is the lack of a universal scientific database with all data systematically stored. 41

Instead, there are several databases, each relying on its own practice in storing, 42

organizing and tracking bibliometric data, including Web of Science, arXiv, PubMed etc. 43

Moreover, none of the datasets is free from errors, mostly occurring due to different 44

referencing styles or typos in authors names (in particular names utilizing non-English 45

characters), which often lead to incorrectly recorded collaborations and citations. This 46

in practice means that each bibliometric study in itself unavoidably carries some degree 47

of bias, resulting from the choice of the database. On top of this comes the fact that 48

different fields usually have different collaboration and citation cultures, which further 49

complicates issue of objectively comparing different scientific fields. 50

On the other hand, researchers is bibliometrics usually work relying on the database 51

at their disposal. Finding additional data is often difficult and sometimes expensive. 52

While the construction of a universal database is an ambitious goal, we recognize that 53

the bibliometric community will benefit from a critical comparison of the available 54

databases. Of course, since there is no “ground truth” to tell between the reliable and 55

non-reliable databases, the best we can do is to systematically examine and quantify the 56

consistency among different scientific databases. We here conduct a detailed analysis of 57

the consistency among six major scientific databases, employing three different 58

paradigms (categories) of bibliometric networks (paper citation, author citation and 59

collaboration). This amounts to a major methodological and empirical extension of our 60

earlier paper [27]: additional datasets and network paradigms are considered, and 61

findings confirmed by complementary analyses. Our results consist of an approximate 62

quantification of consistency between the six databases that hold within each network 63

category. Our study aims at being helpful to colleagues when choosing the most suitable 64

network paradigm. 65

Results 66

We obtained the data on co-authorships and citations from the following six databases: 67

American Physical Society (APS), Web of Science (WoS), DBLP, PubMed, Cora and 68

arXiv. Since some databases are very large (e.g. WoS), we were unable to include them 69

entirely. Nevertheless, we made sure that the dataset from each database is 70

representative of it in terms of papers and citations (see Methods). From each database 71
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we constructed three bibliometric networks using the following three network paradigms 72

(categories): 73

P!P, directed paper citation network (nodes: papers, links: one paper citing 74

another), 75

A$A, directed author citation network (nodes: authors, links: one author cites 76

another in at least one of his/her papers), 77

A�A, undirected co-authorship network (nodes: authors, links: co-authorship of 78

at least one paper). 79

This gives us the total of 6 + 6 + 6 = 18 networks (12 directed and 6 undirected), to 80

which we devote the rest of this paper. Our goal is to study the consistency among the 81

networks within each category in terms of their topologies, from which we draw 82

conclusions on the consistency among the databases. 83

In Table 1 we summarize the basic properties of the 18 examined networks. Numbers 84

of nodes and links vary greatly, but are always larger than 104. WCC is the fraction of 85

nodes contained in the largest connected component (weak connectivity for directed 86

networks, see Methods). With exception of DBLP P!P network, it always contains at 87

least 80% of nodes (DBLP database consists mostly of the papers only from major 88

journals and conferences, which rarely cite one another). Some papers/authors are never 89

cited, others do not cite any other paper/author in the same database. Motivated by 90

this, we consider “bow-tie” [27] of directed networks, which indicates the fraction of 91

‘core’ nodes (both citing and cited), in contrast to the fraction of ‘in’ nodes (never cited) 92

and ‘out’ nodes (not citing). Diversity of these parameters (note their independence 93

from networks’ sizes) already gives a hint at the variability among the databases. Some 94

additional particularities: P!P networks are in general acyclic since a paper can only 95

cite older papers. Rare exceptions occur due to parallel publication of multiple papers 96

citing one another, and due to errors. These networks include the information on 97

chronology of publishing. In contrast, A$A networks often contain cycles, since 98

collaborating authors typically cite one another. Also, basically all nodes here will have 99

self-loops (authors cite their previous work). On the other hand, no P!P network node 100

has a self-loop, since papers usually do not cite themselves (except in very unusual cases 101

or due to errors). 102

We now observe the following: while the three network paradigms (P!P, A$A and 103

A�A) are all bibliometric in nature, the resulting network architectures are very 104

different. In other words, by representing a database via three different network 105

paradigms, we view its complexity from three different standpoints. These three 106

representations are largely uncorrelated, each contributing some new information (for 107

example, although collaborating authors often cite one another, they also cite other 108

scientists they never worked with, and sometimes co-author papers with scientists they 109

never cited or got cited by). This allows the comparison among the databases along 110

three independent lines, allowing us to isolate for each database the network category 111

best suited for its study. To illustrate this point, we graphically visualize a sample of 112

each network in Fig. 1, obtained via network sampling algorithm [28,29]. Network 113

samples are small subnetworks which capture the key topological features of the 114

corresponding large (complete) networks (visualizing complete networks is impractical 115

due to their size, see Methods). Visual comparison of network samples coming from the 116

same database (horizontal) indeed indicates that each network paradigm presents a 117

database from a different angle, viewing its complexity from a specific aspect. 118

Comparison of network samples corresponding to different databases (vertical) reveals 119

significant topological differences among them. They exist along all three vertical 120

columns, and are most clearly pronounced for P!P and A�A networks. This suggests 121
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Network size Network bow-tie

Type Database # Nodes # Links % WCC % In % Core % Out

P!P APS 450,084 4,691,938 99.8% 2.6% 82.7% 14.5%
WoS 728,673 3,633,240 96.9% 11.5% 53.9% 31.5%
DBLP 1,467,987 1,502,092 4.3% 0.6% 0.6% 3.1%
PubMed 5,853,635 18,790,433 99.7% 89.9% 4.3% 5.5%
Cora 195,946 608,475 99.0% 83.7% 8.6% 6.6%
arXiv 27,770 352,768 98.7% 9.2% 73.6% 15.9%

A$A APS 260,816 40,556,550 100.0% 1.7% 84.6% 13.7%
WoS 470,227 20,291,830 99.5% 9.9% 65.3% 24.4%
DBLP 14,880 219,173 98.8% 59.4% 26.8% 12.6%
PubMed 638,178 11,905,813 99.8% 51.1% 31.2% 17.5%
Cora 21,521 582,021 99.6% 9.2% 66.2% 24.1%
arXiv 11,779 586,562 99.4% 7.4% 79.3% 12.7%

A�A APS 248,866 4,231,131 90.0% - - -
WoS 531,952 2,966,442 89.8% - - -
DBLP 1,359,484 5,821,900 89.9% - - -
PubMed 1,675,367 16,926,075 96.4% - - -
Cora 23,480 130,644 87.5% - - -
arXiv 11,868 24,638 81.4% - - -

Table 1. Basic network measures. The values of all basic network measures for the 18
examined networks. See Methods for details on the definitions of network measures and their
computation.

that in all three network categories there are at least some differences in the data 122

structure and bibliometric precision among the databases. Motivated by this insight, we 123

continue our study in more quantitative terms. 124

Figure 1. Graphical visualization of the network samples. As indicated, each
sample corresponds to one of the 18 examined networks. See Methods for details on
network sampling algorithm.

We begin by introducing a platform for quantification of the network topologies [27]. 125

On top of 6 network measures introduced in Table 1, we compute for each network 126

additional 16 measures: 127

Degree statistics and distribution parameters: hki, �, �
in

, �
out

, 128

Degree mixing quantifiers: r, r(in,in), r(in,out), r(out,in), r(out,out), 129

Clustering distribution parameters: hci, hbi, hdi, 130

Clustering mixing quantifiers: r
c

, r
b

, r
d

, 131

Effective diameter parameter: �90. 132

The definition and interpretation of each network measure along with the procedure 133

used for its computation are explained in Methods. The Supporting Information Figure 134

S1 in File S1 graphically shows relevant node degree and clustering profiles and 135

distributions (see Methods). Rather than studying all the values (which are reported in 136

the Supporting Information Table S1 and S2 in File S1), we would here like to illustrate 137

our approach to quantifying the mutual consistency of databases relying on these 138

measures. We focus on a specific one among them, clustering mixing r
b

, whose values for 139

all networks are shown in Table 2. Looking at the table row by row, three observations 140

can be made. All P!P networks are relatively consistent in their values except for 141

DBLP. Similarly, with exception of APS, all A$A networks are roughly consistent. 142

PLOS 4/15



Finally, PubMed is the only database not consistent with the others when it comes to 143

A�A networks. This suggests a simple way to quantify the consistency of databases 144

within each network category. Of course, we expect that the consistency will depend on 145

the chosen network measure. Ideally, the “best” database would be the one most 146

consistent with as many others for as many measures as possible. However, as we show 147

in what follows, trying to identify such a database is elusive. Instead, our main result is 148

the consistent quantification of their mutual consistency for each network category. Our 149

findings are to be understood as an “advice” to researchers in bibliometrics about the 150

suitability of various network paradigms in relation to the database of their interest. 151

APS WoS DBLP PubMed Cora arXiv

P!P 0.43 0.51 0.66 0.41 0.43 0.51
A$A 0.71 0.12 0.17 0.29 0.34 0.22
A�A 0.87 0.91 0.84 0.46 0.85 0.64

Table 2. Values of clustering mixing. Values of the network measure clustering mixing rb
for all 18 examined networks. See text for discussion.

Our next step is to employ the standard technique of multidimensional scaling 152

(MDS) [30,31], with aim to graphically visualize the overall differences among the 153

databases. To this end, for each network category, we consider the differences of values 154

of all network measures and for each pair of databases. The result of MDS is the 155

embedding of 6 points representing 6 databases into the Euclidean space of given 156

dimensionality. This embedding is done in a way that the Euclidean distance between 157

each pair of points is representative of the inconsistency between the corresponding 158

databases, in terms of the average difference in values of network measure (see 159

Methods). The obtained embeddings for 2- and 3-dimensional space are shown in Fig. 2. 160

Closer together databases are, better the overall consistency of their network measures. 161

For the case of P!P networks, only PubMed and Cora appear to be relatively 162

consistent with one another. PubMed and DBLP display a nearly perfect consistency 163

between them for A$A networks, with some (independent) consistency among arXiv, 164

WoS and Cora. For A$A networks, best consistency is found for DBLP, Cora and WoS. 165

Indeed, the consistency among databases is dependent on the network paradigm used to 166

represent them. Even within each of these categories, it seems difficult to establish 167

which databases are mutually consistent and which are not. In what follows, we seek to 168

establish at least some approximate results in this direction. 169

Figure 2. Multidimensional scaling (MDS) analysis. Embedding of points in
2D (top row) and 3D space (bottom row) obtained via MDS. Each point represents one
database as indicated. Distance between any pair of points is representative of the
average difference of network measure values for the corresponding database pair, and
in adequate ratio with distances between other points in that plot.

Returning to the values of network measures, we construct another comparison 170

among databases, this time relying on the standard statistical analysis. We begin by 171

realizing that network measures are not all independent [32, 33], neither are the “true” 172

values for any of them known. This calls for identifying a set of measures which 173

cumulatively provide the optimal information on the network topologies. To this end, 174

for each database we first compute the externally studentized residual, separately for 175

each network measure and category (see Methods). We express the residuals in the 176

units of standard deviations for that measure. That is to say, the database with residual 177

zero is the one most “in the middle” according to that measure. Oppositely, the 178

database with the residual farthest from zero is the one least surrounded by others. 179

Next we use these residuals to identify the optimal set of independent network measures, 180
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separating between directed and undirected networks (Methods). We found this to 181

consist of 13 measures for directed and 7 for undirected networks, whose residuals are 182

reported in Fig. 3. We also confirmed that this selection still cumulatively provides 183

enough information to enable the differentiation among the networks (Methods). The 184

difference with the previous MDS analysis is that here we treat each network measure 185

separately, without mixing their values in any way, and we also remove some measures 186

as redundant. This is done not just to exclude possible inter-dependences among them, 187

but also since the values belonging to different measures cannot always be directly 188

compared. For P!P networks, with exception of DBLP, all databases appear to be 189

relatively consistent. A$A networks also display good consistency, with exception of 190

APS which shows a notable discrepancy. A�A networks reveal APS and arXiv 191

databases to be most inconsistent with others. Note that these results are in a good 192

agreement with the results of the MDS analysis (Fig. 2). In fact, the analysis of 193

residuals again confirms that it is hard to identify a single “best” database in terms of 194

biggest consistency with other databases, even within the realm of a single network 195

category. Needless to say, it would be even more elusive to search for the “best” 196

database simultaneously for all network categories. 197

Figure 3. Analysis via residual computation. Externally studentized residuals
for all databases, computed separately for each independent network measure and each
network category. See Methods for interpretation and details on computation.

Still, as our wish is to offer at least some qualitative argument on mutual consistency 198

of databases, we construct the ranking of databases from computed residuals. Within 199

each network category we proceed as follows. For each network measure, we assign the 200

rank 1 to the database with the residual closest to zero, rank 2 to the database with the 201

residual second closest to zero, and so on until we assign the rank 6. Averaging these 202

ranks yields an average rank for each database, defining a database ranking for each 203

category (see Methods). Smaller the rank of a database, better its overall consistency 204

with the rest. The rankings are reported in Fig. 4. However, despite a clear hierarchy 205

given by ranking, not all ranking differences are statistically significant. To account for 206

this, we indicate as CD (critical difference) the width corresponding to the p-value of 0.1 207

by which we establish the statistical significance. Thus, any ranking difference smaller 208

than CD is not statistically significant. For easier understanding of the figure, we add 209

bold lines to indicate groups of databases where ranking differences are not statistically 210

significant. For P!P networks, WoS is the most consistent database, even though its 211

ranking is not statistically different from Cora, arXiv, APS and PubMed. The same is 212

visible from A$A networks, where rankings of Cora and arXiv are even somewhat 213

better than that of WoS. Finally, DBLP ranks best in terms of A�A networks, followed 214

by WoS, Cora and APS, none of which are actually statistically worse. Based on the 215

available data, these results represent the optimal differentiation among the databases 216

in terms of their consistency. We believe that the differences we found are to be 217

attributed to different methodologies in maintaining different databases. Specifically, 218

WoS keeps track of citations manually, thus avoiding many errors related to referencing 219

styles and authors’ names, which to a large extent explains its good quality. 220

Figure 4. Final overall ranking. Ranking of databases for all three network
categories. Critical difference (CD) indicates what range of ranking differences is not
statistically significant. The difference in ranking of databases underlined by the
common bold line are not statistically significant (Methods).

As mentioned earlier, bibliometric studies are in practice done by relying on the data 221

that happens to be available to the researcher. These data usually comes from a single 222
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database, which is usually among here considered databases. However, such studies 223

often suffer from criticism of bias coming from relying on a single database. To aid this 224

situation, we reiterate the above results towards offering concrete suggestions regarding 225

the choice of the network paradigm best suited for studying any given database. WoS 226

can be basically studied via any network paradigm. Roughly the same can be said of 227

Cora. When examining arXiv, one should avoid A�A networks. In contrast, study of 228

DBLP should exactly go via A�A networks. On the other hand, studying APS and 229

PubMed seems to be less promising. However, if the choice has to be made, P!P 230

appears to be the best option for both. 231

Discussion 232

Our work was done relaying on the representative datasets from six databases which, to 233

our best knowledge, are the ones most frequently used in modern bibliometrics. Of 234

course, we realize that these by no means include all the relevant bibliometric data. In 235

particular, some databases including SCOPUS, Google Scholar and CiteSeer are missing 236

from our study. Unfortunately, we were unable to obtain the representative datasets 237

from these databases. However, some of the missing databases rely on the bibliometric 238

methodology similar to some of the studied databases (notably, SCOPUS uses 239

methodology very similar to WoS [34, 35]). For this reason, we believe that the presence 240

of these databases would not significantly alter our results. Furthermore, the considered 241

databases do not always overlap in the scientific fields they cover (for example APS, 242

Cora and PubMed). Due to this a minor bias could be present in our study, which 243

unfortunately can never be entirely removed if one wants to compare different fields. On 244

the other hand, all databases refer to computer and natural sciences, which are known 245

to have very similar collaboration and citation cultures. We thus believe this bias had 246

no major impact on our key findings. Nevertheless, we agree that there exists an 247

intrinsic incomparability between distant scientific fields (for instance computer science 248

and history), which necessitates new approaches and methodologies able to offer more 249

objective comparisons. Another interesting question revolves around aggregation of the 250

databases: aggregate data would provide a closer approximation of the ground truth, 251

yet it might be hindered by the above described discrepancies in the datasets. We leave 252

this open problem for future work. 253

One could argue that bibliometric networks are not the only framework for studying 254

the consistency among scientific databases. For example, a simple comparison of a 255

sample of records could provide insights on their precision. Yet, complex networks have 256

become over the years a well established platform for investigating complex systems. 257

This is due to their power to reveal the information hidden in the shear complexity of 258

systems such as scientific community. For this reason, while acknowledging the value of 259

additional approaches to this problem, we argue that networks are presently the most 260

appropriate framework. On the other hand, our study could be extended to other 261

network paradigms used for bibliometric networks, such as those based on linking the 262

papers which share keywords or specific words in the title or abstract [36]. 263

The main ingredient of our methodology is the network comparison, realized via 264

computation of 22 network measures and identifying the independent among them. In 265

fact, this turns out to be the simplest approach, easily applicable to both directed and 266

undirected networks. However, we note that the NP-hard problem of network 267

comparison is a topic of constant interest in the field, with novel ideas rapidly 268

accumulating [37]. Also, our approach was largely based on classical statistical analysis 269

involving significance testing, which was recently scrutinized [38]. However, besides 270

being in agreement with our previous paper [27], our results are also confirmed by MDS 271

analysis which is in no way related to classical statistics. We thus argue that our 272
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statistical results are indeed informative. Finally, while noting that improvements of our 273

methodology are possible, we hope our work traces a new avenue for all interested in 274

critically examining science as a human endeavor. 275

Methods 276

The data. The data has been extracted from publicly available repositories and 277

purchased from commercial bibliographic sources. Authors and publications neither 278

citing nor cited were discarded, together with authors not collaborating. Self-citations 279

of papers that occur due to errors were discarded. The details on six studied databases 280

are below. 281

American Physical Society (APS) is the world’s second largest organization of physicists 282

(http://www.aps.org), behind German DPG. It publishes a range of scientific journals, 283

including the Physical Review series, Physical Review Letters and Reviews of Modern 284

Physics. The data considered here contains all publications in aforementioned journals 285

up until 2010 consisting of 450,084 papers and 264,844 authors, and 4,710,547 citations 286

between the papers. 287

Web of Science (WoS) is informally considered the most accurate scientific bibliographic 288

database, professionally hand-maintained by Thomson Reuters 289

(http://thomsonreuters.com). It dates back to early 1950s [39, 40] and contains over 45 290

million records of publications from all fields of science [35]. For this study, we consider 291

all publications in WoS category Computer Science up until late 2014. The entire 292

dataset includes 978,821 papers and 580,112 authors, and 3,633,421 citations between 293

the papers. 294

DBLP Computer Science Bibliography (DBLP) indexes major journals and proceedings 295

from all fields of computer science [41] (http://dblp.uni-trier.de). It is freely available 296

since 1993 and hand-maintained by University of Trier, Germany. It contains more than 297

2 million records of publications, while the citation information is rather scarce 298

compared to WoS [35]. For this study, we considered a snapshot of the database on 299

September 2014 including 2,696,491 papers and 1,424,895 authors, and 1,534,369 300

citations between the papers (http://lovro.lpt.fri.uni-lj.si). 301

PubMed (PubMed) is a search engine of MEDLINE database focusing on life sciences 302

and biomedicine, maintained by US National Institutes of Health 303

(http://www.ncbi.nlm.nih.gov). It contains about 24 million citations between 304

publications dating back to late 19th century. For this study, we extracted open access 305

publications from PubMed Central Collection up until 2014 and author information 306

from MEDLINE Baseline Repository between 2012 and 2014. We thus obtained 307

5,853,635 papers and 1,716,762 authors, and 18,842,120 citations between the papers. 308

Computer Science Research Paper Search Engine (Cora) is a service for automatic 309

retrieval of publication manuscripts from the Web using machine learning 310

techniques [42]. It contains over 200,000 publication records collected from the websites 311

of computer science departments at major universities in August 1998 312

(http://people.cs.umass.edu/ m̃ccallum). For this study, we consider a complete 313

database including 195,950 papers and 24,911 authors, and 623,287 citations between 314

the papers (http://lovro.lpt.fri.uni-lj.si). 315

arXiv.org (arXiv) is a public preprint repository of publication drafts uploaded by the 316

authors prior to an actual journal or conference submission hosted by the Cornell 317

University in US since 1991 [43] (http://arxiv.org). It currently contains almost one 318

million publications from physics, mathematics, computer science and other fields. For 319

this study, we consider all publications in arXiv category High Energy Physics Theory 320

between 1992 and 2003 (http://snap. stanford.edu). The data contains 27,770 papers 321

and 12,820 authors, and 352,807 citations between the papers. 322
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Network sampling algorithm. The goal of network sampling is to extract a 323

subnetwork from the complete (often very large) network, which would be 324

representative of its topological (or other) properties. Due to its small and regulable 325

size, this subnetwork (which we call network sample) can be easily visualized and 326

compared to network samples representing other networks. We obtained the network 327

samples by considering the induced subgraphs on the nodes visited by a random walker 328

starting at some random node [28,29]. That is to say, our network sample includes all 329

the nodes visited by the walker after some number of steps, together with all the links 330

connecting those nodes. In fact, this has been proven to generate samples that are most 331

similar to the original networks [44]. In our work we generated 5000 networks samples 332

of 250 nodes for each of the original networks, whereas the best sample is selected 333

according to Kolmogorov-Smirnov distance between the degree distributions. 334

The network measures. To quantify the topology of the examined networks we 335

used 22 different measures. Below we explain the remaining 20 measures (number of 336

nodes and links is obvious). For undirected networks we compute only the measures 337

naturally defined for them. For directed networks, upon computing the measures 338

naturally defined for them, we disregard their directionality, and also compute the 339

measures normally referring to undirected networks. Largest (weakly) connected 340

component of a directed network is its maximal subnetwork such that all its nodes are 341

mutually reachable, disregarding the directionality. We define as WCC the size of this 342

subnetwork. We measured the strong connectivity only in the context of network 343

bow-tie structure [27] (% core, % in, and % out). 344

Degree distributions. For directed networks, in-degree k
in

and out-degree k
out

of a node 345

are respectively the number of incoming and outgoing links. k is the degree of a node, 346

k = k
in

+ k
out

, and hki denotes the mean degree. For undirected networks we deal only 347

with k. We computed the exponents �
in

, �
out

and � which characterize the degree 348

distributions (for directed network � is computed disregarding the directionality). This 349

is done by fitting the tails of the distributions by maximum-likelihood estimation: 350

�· = 1 + n

 
X

V

ln k·/kmin

!�1

for k
min

2 {10, 25}. (1)

In cases exhibiting power-law degree distributions, these exponents correspond to the 351

actual power-law exponents. In all cases these exponents were characteristic of the 352

degree distributions, in the sense that similar distributions have similar exponents. 353

Degree mixing. Neighbor connectivity Nk· is the mean neighbor degree of all network 354

nodes with degree k· [45]. The degree mixing r(↵,�) is the Pearson correlation coefficient 355

of ↵-degrees or �-degrees at links’ source and target nodes, respectively [46]: 356

r(↵,�) =
1

�
k↵�k�

X

L

(k
↵

� hk
↵

i) (k
�

� hk
�

i) , (2)

where hk·i and �
k· are the means and standard deviations, ↵,� 2 {in, out} (measured 357

only for directed networks). r is the mixing of degrees k, measured for undirected 358

networks and for directed ones disregarding their directionality [47]. 359

Clustering distributions and mixing. All clustering coefficients were computed 360

disregarding the directionality of directed networks. Clustering coefficient c is usually 361

defined as the link density of its neighborhood [32]: 362

c =
2t

k(k � 1)
, (3)

where t is the number of linked neighbors and k(k � 1)/2 is the maximum possible 363

number, c = 0 for k  1. The mean hci is denoted network clustering coefficient [32], 364
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while the clustering mixing r
c

is defined as before. Clustering profile gives the mean 365

clustering Ck of nodes with degree k [48]. Note that the denominator in the equation 366

above introduces biases when r < 0 [33]. Thus, we rely on delta-corrected clustering 367

coefficient b, defined as c · k/� [49], where � is the maximal degree k and b = 0 for 368

k  1. Similarly, degree-corrected clustering coefficient d is defined as t/! [33], where ! 369

is the maximum number of linked neighbors with respect to their degrees k and d = 0 370

for k  1. From definition it follows b  c  d. 371

Diameter statistics. All diameter statistics were computed disregarding the 372

directionality of directed networks. Hop plot shows the percentage of mutually 373

reachable pairs of nodes H(�) with � hops [50]. The network diameter is defined as the 374

minimal number of hops � for which H(�) = 1, while the effective diameter �90 is the 375

number of hops at which 90% of such pairs of nodes are reachable [50], H(�90) = 0.9. 376

Hop plots are averaged over 100 realizations of the approximate neighborhood function 377

with 32 trials [51]. 378

Multidimensional scaling (MDS). MDS is a statistical technique that visualizes 379

the level of similarity of individual objects of a dataset. From the range of the available 380

MDS techniques, we used the non-metric multidimensional scaling (NMDS), which work 381

as follows. Given are h objects (or points) defined via their coordinates in l dimensions. 382

This situation is expressed via h⇥ l matrix called H. From this original matrix H we 383

compute the dissimilarity h⇥ h matrix D, in which each matrix element D(i, j) 384

represents the Euclidean distance between the pair of objects i and j in the original 385

matrix H . NMDS reduces the dimensionality of the problem, by transforming the h⇥ h 386

matrix D into a h⇥ p matrix Y , where h is the number of objects (or points), now 387

embedded in p dimensions instead of l (p < l) [31]. The Euclidean distances between 388

the obtained h points in Y are a monotonic transformation of the points in D in p 389

dimensions. In our analysis, we used a original matrix H with size of 6⇥ 20, meaning 390

that the number of points (data basis) is h = 6 and the number of coordinates is l = 20. 391

The original matrix H is transformed into dissimilarity matrix D with size of 6⇥ 6. 392

Using NMDS we transformed the matrix D into two matrices Y 0 and Y 00, so that Y 0
393

has a size of 6⇥ 2, and Y 00 has a size of 6⇥ 3. 394

Externally studentized residuals. Let x
ij

be the value of j-th network measure of 395

i-th database, where N is the number of databases, N = 6. Corresponding externally 396

studentized residual x̂
ij

is: 397

x̂
ij

=
x
ij

� µ̂
ij

�̂
ij

p
1� 1/N

, (4)

where µ̂
ij

and �̂
ij

are the sample mean and the corrected standard deviation excluding 398

the considered i-th database, µ̂
ij

=
P

k 6=i

x
kj

/(N � 1) and 399

�̂2
ij

=
P

k 6=i

(x
kj

� µ̂
ij

)2/(N � 2). Assuming that the errors in x are independent and 400

normally distributed, the residuals x̂ have Student t-distribution with N � 2 degrees of 401

freedom. Significant differences in individual statistics x are revealed by the 402

independent two-tailed Student t-tests [52] at P -value = 0.1, rejecting the null 403

hypothesis H0 that x are consistent across the databases, H0 : x̂ = 0. Thus, x̂
ij

express 404

the consistency of the database i with the other databases, along the j-th network 405

measure. Note also that the absolute values of individual residuals |x̂| imply a ranking 406

R over the databases, where the database with the lowest |x̂| has rank one, the second 407

one has rank two and the one with the largest |x̂| has rank N . 408

Identifying independent network measures. Denote r
ij

to be the Pearson 409

product-moment correlation coefficient of the residuals x̂ for i-th and j-th network 410
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measure over all databases. Spearman rank correlation coefficient ⇢
ij

is defined as the 411

Pearson coefficient of the ranks R for i-th and j-th statistics. Under the null hypothesis 412

of statistical independence of i-th and j-th statistics, H0 : ⇢
ij

= 0, adjusted 413

Fisher transformation [53]: 414p
N � 3

2
ln

1 + r
ij

1� r
ij

(5)

approximately follows a standard normal distribution. Pairwise independence of the 415

selected network measures is thus confirmed by the independent two-tailed z-tests. This 416

gives 13 independent measures for directed, and 7 independent measures for undirected 417

networks, as shown in the Fig. 3. Furthermore, Friedman rank test [54] confirms that 418

chosen set of measures exhibits significant internal differences, as to still be informative 419

on the databases (see below). 420

Ranking of databases. Significant inconsistencies between the databases are 421

exposed using the methodology introduced for comparing classification algorithms over 422

multiple data sets [55]. Denote R
i

to be the mean rank of i-th database over the 423

selected measure, R
i

=
P

j

R
ij

/K, where K is the number of independent measures 424

K 2 {7, 13}. One-tailed Friedman rank test [54, 56] first verifies the null hypothesis that 425

the databases are statistically equivalent and thus their ranks R
i

should equal, 426

H0 : R
i

= R
j

. Under the assumption that the selected statistics are indeed independent, 427

the Friedman testing statistic [54]: 428

12K

N(N + 1)

 
X

i

R2
i

� N(N + 1)2

4

!
(6)

has �2-distribution with N � 1 degrees of freedom. By rejecting the hypothesis at 429

P -value = 0.1, we proceed with the Nemenyi post-hoc test that reveals databases whose 430

ranks R
i

differ more than the critical difference [57]: 431

q

r
N(N + 1)

6K
, (7)

where q is the critical value based on the studentized range statistic [55], q = 2.59 at 432

P -value = 0.1. A critical difference diagram plots the databases with no statistically 433

significant inconsistencies in the selected statistics [55]. 434

Supporting Information 435

S1 File 436

Degree and clustering graphical profiles, continuation of network measures. 437

Node degree and clustering profiles and distributions of all the considered networks, 438

along with other network statistics. See Methods for interpretation and details on 439

computation. 440
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21. Levnajić Z, Lužar B, Povh J, Perc M. Community Structure and the Evolution of
Interdisciplinarity in Slovenia’s Scientific Collaboration Network. PLoS ONE.
2014;9:e94429.

22. Krumov L, Fretter C, Müller-Hannemann M, Weihe K, Hütt MT. Motifs in
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