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Abstract. Label propagation has proven to be an extremely fast method for detecting communities in large
complex networks. Furthermore, due to its simplicity, it is also currently one of the most commonly adopted
algorithms in the literature. Despite various subsequent advances, an important issue of the algorithm has
not yet been properly addressed. Random (node) update orders within the algorithm severely hamper
its robustness, and consequently also the stability of the identified community structure. We note that an
update order can be seen as increasing propagation preferences from certain nodes, and propose a balanced
propagation that counteracts for the introduced randomness by utilizing node balancers. We have evaluated
the proposed approach on synthetic networks with planted partition, and on several real-world networks
with community structure. The results confirm that balanced propagation is significantly more robust
than label propagation, when the performance of community detection is even improved. Thus, balanced
propagation retains high scalability and algorithmic simplicity of label propagation, but improves on its
stability and performance.

1 Introduction

Complex real-world networks can comprise local struc-
tural modules (i.e., communities [1]) that are groups of
nodes densely connected within and only loosely connected
with the rest of the network. Communities may play im-
portant roles in different real-world systems – they can be
related to functional modules in biochemical networks [2]
or individuals with common interests in social networks [1].
Moreover, community structure also has a strong impact
on dynamic processes taking place on such networks [3]
and can thus provide an important insight into not only
structural organization but also functional behavior of var-
ious real-world systems.

As a consequence, analysis of network community struc-
ture has been the focus of recent endeavor in different
fields of science. There has also been a substantial num-
ber of community detection algorithms proposed in the
literature over the last years [4,5,2,6–13] (for a compre-
hensive survey see [14]). Nevertheless, due to scalability
issues, only a small minority of these algorithms can be
applied to large real-world networks with several millions,
billions of nodes, edges respectively.

A notable step towards this end was made by Ragha-
van et al. [7], who employed a simple label propagation
to reveal significant communities in large real-world net-
works. Communities are identified by propagating (com-
munity) labels among nodes, thus, each node is assigned
the label shared by most of its neighbors. Due to very
fast structural inference of label propagation, densely con-
nected sets of nodes form a consensus on some particular
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label after only a few iterations [7,13]. The algorithm thus
exhibits near linear complexity, which makes it applicable
on networks with millions of nodes in a matter of min-
utes [13]. The basic algorithm was further analyzed and
refined by various authors [15–24,13,25,26], when, due to
its simplicity, label propagation is also currently one of
the most commonly adopted algorithms in the literature.

Despite the above efforts, an important issue of la-
bel propagation has not yet been properly addressed. To
overcome convergence problems in some types of networks,
Raghavan et al. [7] have proposed propagating labels among
nodes (i.e., updating nodes’ labels) in a random order. Al-
though this updating strategy solves the aforementioned
problem, introduction of randomness severely hampers the
robustness of the algorithm, and consequently also the sta-
bility of the identified community structure. It has been
noted that the algorithm reveals a large number of dis-
tinct community structures even in smaller networks [7,
16,19,13], when these structures are also relatively differ-
ent among themselves [16,13]. Still, the robustness of the
algorithm can also be related to the significance of com-
munity structure in a network [13].

We argue that updating the nodes in some particular
order can be seen as placing higher propagation prefer-
ence [18] to the nodes that are updated at the beginning,
and lower propagation preference to the nodes that are
updated towards the end (and updating the nodes in a
random order). The order of node updates thus governs
the dynamics of the algorithm in a similar manner as (cor-
responding) node propagation preferences. This observa-
tion allows us to stabilize the label propagation algorithm
by utilizing node preferences to counteract (i.e., balance)
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the randomness introduced by random node updates. The
resulting algorithm is denoted balanced propagation and
differs from label propagation merely in the introduction
of node balancers.

We have evaluated the proposed algorithm on syn-
thetic benchmark networks with planted partition, and
on various real-world networks with community structure.
The results confirm that balanced propagation is signifi-
cantly more robust than simple label propagation, when
the performance of community detection is even improved
(in most cases). We also apply the algorithm to an en-
tire European road network, which is not considered to
reveal clear community structure. Nevertheless, the algo-
rithm accurately identifies communities that correspond
to different (geographical) regions of Europe, without any
serious issues with stability.

The rest of the article is organized as follows. In Sec-
tion 2 we formally present label propagation, and review
issues and advances relevant for this research. Section 3
introduces balanced propagation and discusses the main
rationale behind it. Empirical evaluation with discussion
is given in Section 4 and conclusion in Section 5.

2 Label propagation

Let the network be represented by a simple undirected
graph G(N,E), where N is the set of nodes and E is the
set of edges1. Furthermore, let wnm be the weight of the
edge incident to nodes n,m ∈ N . Moreover, let cn denote
the community (label) of node n ∈ N and let N (n) denote
the set of its neighbors.

Basic label propagation algorithm (LPA) [7] reveals net-
work communities by exploiting the following simple pro-
cedure. At first, each node n ∈ N is labeled with an unique
label, cn = ln. Then, at each iteration, each node adopts
the label shared by most of its neighbors (considering also
edge weights). Hence,

cn = argmax
l

∑
m∈N l(n)

wnm, (1)

where N l(n) is the set of neighbors of n ∈ N that share
label l (ties are broken uniformly at random). Due to the
existence of many intra-community edges, relative to the
number of inter-community edges, densely connected sets
of nodes form a consensus on some particular label after a
few iterations. Thus, when the algorithm converges (i.e.,
equilibrium is reached), disconnected sets of nodes sharing
the same label are classified into the same community. Due
to extremely fast structural inference of label propagation,
the algorithm exhibits near linear time complexity [7,13]
(in the number of edges of the network) and can easily
scale to networks with millions, or even billions, of nodes
and edges [13,25].

1 In directed networks, each edge is treated as undirected,
and in multi-networks, multiple edges among nodes are en-
coded into edge weights.

Leung et al. [18] have first noticed that label propa-
gation can be substantially improved by increasing prop-
agation preference (i.e., propagation strength) from cer-
tain nodes. The updating rule of the algorithm (i.e., equa-
tion (1)) is thus rewritten into

cn = argmax
l

∑
m∈N l(n)

pmwnm, (2)

where pn is the preference of node n ∈ N . Adequate node
preferences can alter the dynamics of label propagation,
in order to guide the algorithm towards a more signifi-
cant community structure [13]. For the analysis and com-
parison of different node preference strategies, and corre-
sponding algorithms, see [18,13,25].

Next, we also discuss two main issues of label propaga-
tion and its advances. First, consider a bipartite network
with two sets of nodes, denoted red and green nodes. Fur-
ther assume that, at some point of the algorithm, all red
nodes share label lr, and all green nodes share label lg. Due
to bipartite structure, at the next iteration, all red nodes
will adopt label lg, and all green nodes will adopt label
lr. Moreover, at next iteration, all nodes will recover their
initial labels, failing the algorithm to converge. It should
be noted that such oscillations of labels are not limited
to bipartite networks, but occur in various real-world net-
works that are commonly analyzed in the literature.

To ensure convergence, Raghavan et al. [7] have pro-
posed asynchronous updating of nodes. Hence, nodes are
no longer updated all together, but sequentially, in some
random order. Thus, when node’s label is updated, pos-
sibly already updated labels of its neighbors are consid-
ered (in contrast to synchronous updating, where only la-
bels from the previous iteration are considered). Although
asynchronous updating eliminates aforementioned oscilla-
tions of labels, introduction of randomness severely dis-
turbs the robustness of the algorithm, and consequently
also the stability of the identified community structure.
The stability of label propagation presents a severe issue
for the algorithm, however, it has not yet been properly
addressed in the past (to the best of our knowledge).

Second, consider a network with overlapping commu-
nities [2] and let n ∈ N be a node that has equally strong
connections with two or more such communities. As ties
are broken uniformly at random (see equation (1)), la-
bel cn would then, in general, constantly change. Further-
more, when many of such nodes exist, the algorithm would
obviously never converge. Again, the issue is not limited
to networks with overlapping communities.

Two possible solutions have been proposed in the lit-
erature. Leung et al. [18] suggested including label cn into
the maximal label consideration (besides merely neigh-
bors’ labels), when Raghavan et al. [7] proposed a slightly
modified approach. When there are multiple maximal la-
bels (among neighbors’ labels), and one of them equals the
concerned label cn, the node retains its label. In contrast
to the former, the latter approach considers concerned la-
bel only when there indeed exist multiple maximal labels.
Although both presented approaches work well for simple
label propagation (i.e., equation (1)), this is not necessar-
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ily the case for different advances of the algorithm (e.g.,
equation (2)). Still, for the analysis in this article we adopt
the approach proposed by Raghavan et al. [7].

In the proceeding section we revisit both issues dis-
cussed above, and propose solutions to overcome them.

3 Balanced propagation

Label propagation with asynchronous updating accesses
the nodes in a random order. In particular, nodes are
(re)shuffled before each iteration, in order to address con-
vergence issues in some networks. However, as already
discussed in Section 2, this incorporation of randomness
severely hampers the robustness of the algorithm.

The issue can be addressed in an ad hoc fashion by
simply accessing the nodes in some predefined (determin-
istic) order. This would clearly stabilize the algorithm,
and possibly also perform well on real-world networks. We
have conducted several experiments with different update
orders, based on various node statistics (i.e., degree and
eigenvector centrality [27,28], clustering coefficient [29]).
Exact results are omitted, however, they indicate that, al-
though none of these deterministic orders performs well
in all networks, best order commonly corresponds to node
preference strategy that also performs well. For instance,
when ordering the nodes based on their degrees (decreas-
ingly) gives good results, setting propagation preferences
to the degrees of the nodes (and updating them in a ran-
dom order) also performs well (and vice-versa).

Based on the above discussion we pose a hypothesis
that the order of node updates within asynchronous la-
bel propagation governs algorithm’s dynamics in a simi-
lar manner as the corresponding node propagation pref-
erences. Intuitively, nodes that are updated at the end
of some iteration cannot efficiently propagate their final
labels onward, as (most of) their neighbors have already
been updated. On the other hand, a node that is consid-
ered first can possibly propagate its label to all of its neigh-
bors, and thus form a community. Hence, nodes updated
at the beginning exhibit higher propagation strength than
those that are considered towards the end.

We further study the proposed hypothesis on a toy ex-
ample network in Figure 1. The network consists of two
communities, namely c1 and c2, that are defined in a strong
sense [30] (i.e., each node has more intra-community than
inter-community edges). Further assume that, at some
point of the algorithm, nodes in c1, namely n1, n2 and
n3, are labeled with unique (community) labels, when all
nodes in c2 have already been classified to their right com-
munity (see Figure 1).

We first analyze how different orders of node updates
affect the final outcome of the algorithm. When node n1
is considered first, it will adopt the label of either n2 or
n3. Due to symmetry, we can assume that it adopts the
label of node n2. No matter which of the nodes n2 or n3
is updated next, at the end of this iteration, all nodes in
community c1 will be labeled with the same label (that ini-
tially belongs to node n2). The outcome thus corresponds
to the natural community structure of the network.

Fig. 1. (Color online) Toy example network with two strong
communities (inter-community edges are shown with dashed
links). Node colors (shapes) indicate their community labels.

On the other hand, when node n1 is updated last, the
results can differ. Again, we can assume that node n2 is
considered before node n3. If node n2 adopts the label of
either n1 or n3, the algorithm proceeds similar as above.
However, node n2 can also adopt the label of the second
community c2 (with some probability). In that case, it is
straightforward to see that nodes n1 and n3 will also adopt
the same label, thus, at the end, all nodes in the network
will be classified to the same community c2.

To summarize, if we first consider the core of commu-
nity c1 (i.e., node n1), the label propagation will inevitably
lead to the natural community structure of the network.
However, if we access the border of community c1 first (i.e.,
nodes n2 and n3), the algorithm could potentially classify
all nodes into the same community (mainly due to the fact
that community c2 is already established). The example
shows that even in such simple network, label propagation
is extremely sensitive to the order of node updates.

Similar behavior as above can be observed, when we
set higher propagation preference to either core or border
of community c1 (and update the nodes in a random or-
der). When core node n1 has the highest preference in the
network, nodes n2 and n3 would obviously adopt the label
of node n1. This would unavoidably lead to identification
of the natural community structure, no matter the order
of updates. However, when higher preference is given to
border nodes n2 and n3 (i.e., lowest preference is given
to node n1), outcome of the algorithm can again corre-
spond to the trivial community structure, where all nodes
are classified into the same community (depends on the
preference of other nodes and the order of updates). We
thus conclude that, at least for this toy example, order of
node updates can be seen as placing higher propagation
preference to the nodes that are updated first, and lower
propagation preference to the nodes that are updated last.

The latter enables us to stabilize the basic label prop-
agation algorithm. As random node updates cannot be
avoided (Section 2), node propagation preferences can be
utilized to counteract the randomness introduced by ran-
dom updates. Node preferences are thus employed to bal-
ance the algorithm (i.e., node balancers) and are set ac-
cording to the reverse order in which the nodes are as-
sessed. This retains the dynamics of the basic algorithm,
but greatly improves its robustness and the stability of
the identified community structure.

Let nodes N be ordered in some random way, and let
in denote the normalized position of node n ∈ N in this
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order. Hence,

in =
index of node n

|N |
, (3)

where in ∈ (0, 1]. Assuming linearity, we introduce node
balancers as

pn = in, (4)

where pn is the preference of node n ∈ N (see equa-
tion (2)). Note that node balancers have to be recom-
puted at the beginning of each iteration (i.e., after each
random shuffling of nodes). The resulting algorithm is else
identical to the basic label propagation (with node pref-
erences) and is denoted balanced propagation algorithm
(BPA). Empirical evaluation in Section 4 shows that bal-
anced propagation is not only more stable than basic label
propagation, but also improves its community detection.
Note also that the revealed community structure could be
even further stabilized by, e.g., combining multiple net-
work partitions [31].

We also analyze a variant of the algorithm, where lo-
gistic function is used to model the relation between up-
date orders and propagation preferences (the algorithm is
denoted BPAL). Hence, node balancers are set due to

pn =
1

1 + e−β(in−α)
, (5)

where α and β are parameters of the algorithm. We fix
α = 1

2 and β = 5 based on some preliminary experiments.
Empirical analysis reveals that BPAL usually performs
slightly better than BPA (Section 4).

Last, we also briefly consider the second main issue of
label propagation. As already discussed in Section 2, nodes
having equally strong connections with several (overlap-
ping) communities might prevent the algorithm from con-
verging. The problem is even enhanced in the case of
balanced propagation, as random node preferences, intro-
duced through random update orders, can extend the issue
to cases, where node has only similarly strong connections
with different communities. Consequently, solutions pro-
posed in the literature [7,18] do not necessarily overcome
the problem in the case of balanced propagation.

Still, the true reason behind these convergence prob-
lems is the existence of overlapping communities in real-
world networks. However, the purpose of this research is
to address issues with random update orders, and not to
extend balanced propagation to overlapping communities
(see, e.g., [23]). Thus, for the sake of the empirical analy-
sis, we adopt the following simple approach (and limit the
analysis to non-overlapping communities).

As the discussed problems of balanced propagation
(i.e., BPA and BPAL algorithms) are actually an artifact
of node balancers, we simply discard their use, when the
algorithm does not converge after at most some maximal
number of iterations. Note that this is in fact identical to
applying the basic label propagation (i.e., LPA algorithm)
afterwards, which obviously ensures the algorithm’s con-
vergence. We fix the maximum number of iterations to
100, what should suffice for networks with almost a bil-
lion edges [13].

4 Experiments and discussion

First, balanced propagation was analyzed, and compared
against label propagation, on synthetic benchmark net-
works with planted partition and on several real-world
networks with community structure (sections 4.1, 4.2 re-
spectively). We address the stability of the algorithms and
also the accuracy of community detection. Next, the pro-
posed algorithm was further applied to a complete Eu-
ropean road network, when the results are analyzed and
discussed in Section 4.3.

Due to generality, results in the following sections are
assessed in terms of different measures of community struc-
ture significance. Earlier work commonly reported the mod-
ularity Q [32] of the identified community structure. Mod-
ularity measures the significance of communities due to
some null model (which is considered to be without com-
munity structure). Commonly, a random graph with the
same degree sequence is selected for the null model. Hence,

Q =
1

2|E|
∑

n,m∈N

(
Anm −

knkm
2|E|

)
δ(cn, cm), (6)

where A is the adjacency matrix of the network, kn is de-
gree of node n ∈ N and δ is the Kronecker delta. Higher
values represent more significant community structure (Q ∈
[−1, 1]), however, recent work shows that modularity has
a number of severe deficiencies [33–35] and should not be
considered as a reliable indicator of community structure.

For a more adequate assessment of the significance
of revealed communities we also adopt the conductance
Φ [36]. Let S ⊂ N be some community in the network
thus |S| ≤ |N |/2. Conductance of a set of nodes S is then
defined as

Φ =

∑
n∈S,m∈S Anm

min{k(S), k(S)}
, (7)

where S is the complement of S and k(S) is the cumulative
degree of S (i.e., k(S) =

∑
n∈S kn). Conductance thus

measures the goodness of community S, or equivalently,
the quality of corresponding network cut (S, S). Lower
values represent more significant communities (Φ ∈ [0, 1]).
Nevertheless, conductance cannot be easily extended to
an entire community structure of a network. Thus, results
are commonly assessed at different scales separately, in
the form of network community profile (NCP) [37] plots.
Still, due to simplicity, we also define Φ as the average
conductance over all communities in a network.

For networks with known community structure, identi-
fied communities are also compared against the true ones.
We adopt two measures from the field of information the-
ory [38]. First, normalized mutual information (NMI ) [39],
has become a de facto standard in the community detec-
tion literature. Let C be a partition (i.e., communities)
extracted by some algorithm, and let P be the known par-
tition for some network (corresponding random variables
are C and P respectively). NMI of C and P is then

NMI =
2I(C,P )

H(C) +H(P )
, (8)
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where I(C,P ) is the mutual information of the partitions
(i.e., I(C,P ) = H(C) − H(C|P )), and H(C), H(P ) and
H(C|P ) are standard and conditional entropies. NMI of
identical partitions equals 1, and is 0 for independent par-
titions (NMI ∈ [0, 1]).

Second, variation of information (VOI ) [40], has sev-
eral desirable properties with respect to NMI. In particu-
lar, it is symmetric local measure that also has the prop-
erties of a distance in the space of partitions. VOI of C
and P is defined as

VOI = H(C|P ) +H(P |C), (9)

thus, lower values represent better correlation between
partitions. The maximum value of VOI depends on the
size of the network (VOI ∈ [0, log |N |]), therefore, for
meaningful comparisons, we divide the obtained values
with log |N | [41].

4.1 Synthetic networks with planted partition

We have first analyzed the balanced propagation on a
class of synthetic benchmark networks with planted parti-
tion [42]. The significance of community structure is con-
trolled by a mixing parameter µ ∈ [0, 1], where smaller
values give clearer community structure. Networks exhibit
power-law degree and community size distributions, as
commonly observed in real-world networks [43,44]. Power-
law exponents α are set to 2 and 1 respectively (i.e.,
P (x) ∼ x−α). Moreover, we fix the number of nodes to
1000 and vary the sizes of communities between [10, 50]
and [20, 100] nodes. Results are assessed in terms of NMI
and are shown in Figure 2.

Considering only the average performance (Figure 2,
top), no clear difference between balanced propagation
(i.e., BPA and BPAL algorithms) and label propagation
(i.e., LPA algorithm) is observed. However, scatter plots
showing individual runs (Figure 2, bottom) reveal that
there is actually a significant disparity between the ap-
proaches. When community structure is only roughly de-
fined (i.e., for µ > 0.5), balanced propagation either rel-
atively accurately identifies communities in the network
(i.e., NMI ≈ 1) or classifies all nodes into a single commu-
nity (i.e., NMI = 0). On the other hand, label propagation
also commonly reports community structures, whose cor-
respondence to the actual communities is only marginal
(i.e., NMI ≈ 0.75, NMI ≈ 0.5 respectively). The latter
is particularly apparent in the case of larger communities
(note also the difference in error bars).

The results thus confirm that balanced propagation
is much more robust than simple label propagation, when
the community detection strength of the basic algorithm is
largely retained in the refined versions (on average). Still,
to obtain results comparable with current state-of-the-art
community detection algorithms (see [45]), different ad-
vances of the basic approach have to be employed [13,25].

To further address the validity of balanced propaga-
tion, we have also applied the algorithms to a random
graph à la Erdös-Rényi [46] that (presumably) has no com-
munity structure. The number of nodes is again fixed to

Fig. 2. (Color online) Comparison of balanced and label prop-
agation on synthetic benchmark networks with planted parti-
tion [42]. The number of nodes is fixed to 1000 and the sizes
of communities vary between [10, 50] and [20, 100] nodes (left,
right respectively). We report the averages over 100 realizations
and also the scatter plots showing individual runs (top, bottom
respectively). For the former, error bars correspond to sample
standard deviations computed from only nontrivial partitions
(i.e., with NMI > 0), and for the latter, a small amount of
noise was added along the horizontal axes.

1000, when we vary the average degree k between 10 and
100. Both balanced propagation algorithms reveal no com-
munity structure in these networks – all nodes are classi-
fied into a single community (or multiple communities in
the case of disconnected networks) in all 100 realizations
of random networks. On the other hand, label propagation
also partitions the networks into non-trivial communities,
when the average degree is small enough (i.e., for k ≤ 10).

4.2 Real-world networks with community structure

Balanced propagation was further analyzed on eight real-
world networks with community structure (Table 1). All
these network are commonly employed in the community
detection literature, and include different social, biological
and technological networks. Due to simplicity, all networks
were treated as unweighed and undirected.

Table 1. Real-world networks with community structure.

Network Description Nodes Edges

karate Zachary’s karate club. [47] 34 78
dolphins Lusseau’s dolphins. [48] 62 159

books Political books. [49] 105 441
football American football. [1] 115 616

jazz Jazz musicians. [50] 198 2742
elegans Nematode C. elegans. [51] 453 2025
netsci Network scientists. [52] 1589 2742
power U.S. power grid. [29] 4941 6594
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We first directly compare the stability of the revealed
community structures for balanced and label propagation
(i.e., BPA and BPAL, and LPA algorithms respectively).
We apply the algorithms to each network 1000 times and
count the number of distinct community structures ob-
tained. We also measure the pairwise VOI of the parti-
tions, to further evaluate the robustness of the algorithms.
Due to space complexity, analysis is reduced to smaller
networks (with at most hundreds of nodes). Results can
be seen in Table 2.

Table 2. Analysis of the stability of balanced and label propa-
gation. We report the number of distinct community structures
obtained over 1000 runs and the average pairwise VOI of the
corresponding partitions.

Network
Distinct Pairwise V OI

LPA BPA BPAL LPA BPA BPAL

karate 184 24 19 0.276 0.199 0.192
dolphins 525 39 36 0.256 0.084 0.079

books 269 37 29 0.124 0.100 0.100
football 414 180 154 0.095 0.093 0.087

jazz 63 22 20 0.107 0.032 0.029
elegans 707 76 75 0.124 0.015 0.015

The analysis confirms earlier observations that basic
label propagation is relatively unstable, even on smaller
networks [7,16,19,13]. However, the latter does not hold
for balanced propagation that reveals only a small num-
ber of distinct community structures in each network. In
most cases, this number is for a scale smaller than in the
case of label propagation. Moreover, the pairwise similar-
ity between the structures is also significantly improved,
when the same trend is observed if we measure similarity
only among distinct structures (e.g., for elegans network,
average pairwise VOI equals 0.1558, 0.0430 and 0.0424 for
LPA, BPA and BPAL algorithms respectively).

We conclude that balanced propagation is significantly
more robust than label propagation, and can be, despite
its randomized nature, considered as fairly stable. Note
also that balanced propagation with logistic model (i.e.,
BPAL algorithm) performs slightly better than the basic
algorithm with a linear model (i.e., BPA algorithm).

Three of the networks in Table 1, namely karate, dol-
phins and football, have known natural partitions into
communities (that result from earlier studies). To analyze
also the community detection strength of balanced prop-
agation, we measure the VOI between the natural par-
titions and those identified by different algorithms. The
results appear in Table 3, when we also report the results
for a classical modularity optimization algorithm (MO)
proposed by Clauset et al. [4] (for reference).

Note that, in the case of karate and dolphins net-
works, balanced propagation performs significantly bet-
ter than label propagation (and modularity optimization),
when in the case of football network, the obtained VOI
is roughly the same. Thus, despite relatively similar per-
formance on synthetic benchmark networks (Section 4.1),

Table 3. Analysis of community detection strength of bal-
anced and label propagation, and modularity optimization. We
report VOI between the natural communities and those iden-
tified by the algorithms (results are averages over 1000 runs).

Network Number
V OI

LPA BPA BPAL MO

karate 2 0.239 0.145 0.142 0.218
dolphins 2 0.363 0.063 0.062 0.257
football 12 0.155 0.169 0.168 0.323

balanced propagation more accurately identifies the true
communities within these real-world networks than label
propagation (and also modularity optimization).

For a better comprehension, the fraction of correctly
classified [1] nodes for BPAL algorithm equals 72%, 96%
and 81% for karate, dolphins and football networks respec-
tively (on average).

In Table 4 we also report average conductance Φ and
modularity Q of the revealed community structures for all
networks in Table 1 (mainly to enable comparison with
earlier work). Balanced propagation also performs bet-
ter in terms of conductance. Still, results should be taken
with caution as BPA and BPAL algorithms commonly re-
turn larger communities than LPA algorithm, which im-
plies lower average conductance (see below). On the other
hand, according to modularity, performance depends on
the size of the network. We argue that this is an artifact
of an intrinsic scale incorporated into the measure of mod-
ularity (i.e., resolution limit [33,35]), thus, lower values of
modularity obtained by balanced propagation on smaller
networks should not be attributed to weaker community
structure (see Table 3).

Again, a general pattern can be observed between both
balanced propagation algorithms.

Table 4. Analysis of community detection significance of bal-
anced and label propagation. We report the average conduc-
tance Φ and modularity Q of communities identified by differ-
ent algorithms (results are averages over 1000 runs).

Net.
Φ Q

LPA BPA BPAL LPA BPA BPAL

kara. 0.285 0.254 0.242 0.355 0.296 0.301
dolph. 0.345 0.082 0.078 0.485 0.377 0.380
books 0.272 0.063 0.062 0.505 0.460 0.460
foot. 0.328 0.295 0.296 0.593 0.602 0.602
jazz 0.210 0.141 0.142 0.340 0.285 0.285
eleg. 0.354 0.120 0.117 0.117 0.036 0.037

netsci 0.063 0.006 0.007 0.879 0.945 0.944
power 0.431 0.129 0.129 0.595 0.888 0.887

Next, we further analyze the larger two networks in Ta-
ble 1, namely, netsci and power. We apply each algorithm
100 times and analyze the conductance of obtained com-
munities at different scales. The results are reported in the
form of network community profile (NCP) [37] plots, and
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Fig. 3. (Color online) Comparison of balanced and label prop-
agation on netsci and power networks. We report the scatter
plots showing individual communities, and the minimum values
(i.e., lower hulls) at different scales (top, bottom respectively).
Results were obtained over 100 runs.

are shown in Figure 3. NCP plots measure the quality of
the best community (due to conductance) as a function
of its size (Figure 3, below). Social and information, and
also technological, networks commonly reveal rather char-
acteristic structure of NCP plots, with initial decreasing
and subsequent increasing trend (for more see [37]).

Observe that balanced propagation identifies commu-
nities on a much wider scale, including also larger commu-
nities. The structure of NCP plots thus better coincides
with the analysis of Leskovec et al. [37], where a natural
(i.e., best) community size was estimated to a round 100
nodes. In other words, basic label propagation finds best
communities at much smaller scale than balanced propa-
gation (i.e., at a round 10 nodes), when the conductance
is also significantly higher on average (Table 4). Note also
that label propagation reveals a number of communities
with very high conductance (i.e., (black) circles in the up-
permost part of Figure 3, top), which can be directly re-
lated to the issues of the algorithm discussed in Section 2.

We conclude that, at least for the networks analyzed,
balanced propagation is indeed more stable than basic la-
bel propagation, when the quality of the identified com-
munity structure is also improved in most cases.

Last, we also briefly analyze the scalability of the pro-
posed balanced propagation. In Table 5 we report the av-
erage number of iterations2 made by the algorithms over
1000 runs. As discussed in Section 3, we do not directly ad-
dress the issues with overlapping communities. Therefore,
nodes, having strong connections with different commu-
nities, can prevent basic balanced propagation from con-
verging. The results in Table 5 thus include only the runs
where the algorithms converged in a fixed (maximal) num-
ber of iterations (this includes at least 90% of runs in each
case). For the same reason, netsci and power networks
were not included in the analysis.

2 Each iteration has linear time complexity O(|E|).

Table 5. Analysis of complexity of balanced and label prop-
agation. We report the average number of iterations made by
the algorithms over 1000 runs (see text).

Network
Iterations

LPA BPA BPAL

karate 3.8 12.6 12.8
dolphins 4.9 21.5 22.3

books 4.9 31.0 28.8
football 3.7 23.4 22.7

jazz 4.8 25.9 25.0
elegans 7.1 16.1 16.1

The complexity of label propagation is quite lower
compared to balanced propagation. Still, all algorithms
reveal communities in a relatively small number of iter-
ations and can be easily scaled to larger networks (ex-
hibit near linear time complexity O(|E|)). It should also
be noted that extremely fast convergence of label propa-
gation can be somewhat related to random node updates
(Section 2). Random update order can be seen as increas-
ing propagation strength from certain nodes (Section 3),
which limits the dynamics of the algorithm, and instantly
leads it towards some stable, probably suboptimal (i.e.,
random), partition. The convergence of the algorithm is
thus indeed fast, still, the identified community structure
is extremely unstable and often suboptimal (as also ob-
served by previous work [7,16,19,13]).

4.3 European road network

Road networks are not considered to convey a clear com-
munity structure, consisting of densely connected modules
(due to sparsity of such networks). However, the network
can still contain groups of nodes that are well isolated from
others (i.e., connected through only few edges) and com-
munity detection algorithms can be employed to reveal
such partition of the network. Communities should in this
case largely relate to the properties of the road transport
within the region, and also coincide with the geographical
characteristics of the area.

We have constructed a network of all roads included
in the International E-road Network (Figure 4). Nodes
thus correspond to European cities and edges represent di-
rect (class A, B) road connections among them. We limit
the analysis to the main component of the network that
consists of 1039 nodes and 1355 edges (a complete net-
work has 1177 nodes and 1469 edges). Note that the net-
work is neither scale-free [43] (i.e., maximum degree equals
10, when the degree distribution is, e.g., log-normal) nor
small-world [29] (i.e., average distance among nodes is l =
18.40 and the clustering coefficient [29] equals C = 0.02).

Due to long average distances among different parts
of the network, road networks are particularly hard to
partition with standard community detection algorithms.
Furthermore, as the network has almost tree-like struc-
ture, it is often hard to decide where to split long paths
of nodes. Indeed, if we apply the basic label propagation
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Fig. 4. (Color online) Community structure of the main component of European road network revealed with balanced propaga-
tion (i.e., BPA algorithm). Node symbols (colors) correspond to different communities, when edge widths represent significant
inter-community edges. Due to clarity, only the largest 10 communities of total 24 are shown (Q = 0.8344 and Φ = 0.0796).
Note how communities quite accurately coincide with different (geographical) regions of Europe.

(i.e., LPA algorithm) we obtain 343 communities with
Q = 0.5617 and Φ = 0.4424 (on average over 1000 runs).
Hence, communities consist of only 3.03 nodes on average,
thus, they can only hardly be considered as meaningful.

On the other hand, balanced propagation (i.e., BPA al-
gorithm) partitions the network into 35 communities with
Q = 0.8374 and Φ = 0.1224 (on average over 1000 runs).
In Figure 4 we show the community structure that ob-
tained minimum average conductance Φ. Note how the
largest communities quite accurately coincide with differ-
ent (geographical) regions of Europe. In particular, from
left to right (top to bottom), communities represent cities
of Iberian Peninsula (e.g., Madrid), eastern Central Eu-
rope (e.g., Berlin), western Central Europe (e.g., Paris),
Apennine Peninsula (e.g., Rome), eastern Russia, western
Russia and Finland (e.g., Moscow), northern East Europe
(e.g., Bratislava), southern East Europe (e.g., Bucharest),
Balkan Peninsula (e.g., Skopje), Scandinavian Peninsula
(e.g., Stockholm), etc. It is ought to be mentioned that,
although community structures revealed by the algorithm
through different runs indeed differ, in most cases, largest
communities correspond to the same regions as discussed
above. The latter thus further confirms the robustness of
the balanced propagation.

5 Conclusions

The article addresses one of the main issues of label prop-
agation algorithm for community detection – the stabil-

ity of the identified community structure. We introduce
balanced propagation that controls (i.e., stabilizes) the
dynamics of basic label propagation through utilization
of node balancers. The resulting approach is significantly
more robust than its label propagation counterpart, when
its community detection strength is even improved. Thus,
balanced propagation retains high scalability and algorith-
mic simplicity of label propagation, but improves on its
stability and performance. The proposition has been val-
idated on synthetic networks with planted partition, and
on several real-world networks with community structure.
Moreover, the proposed algorithm was further applied to
an entire European road network, where it accurately par-
titions the network with respect to (geographical) regions.

Due to its simplicity, balanced propagation can be eas-
ily incorporated into arbitrary (label) propagation algo-
rithm, not limited to the field of community detection.
Moreover, the work provides further comprehension of the
propagation on networks, with different applications.

The work has been supported by the Slovene Research Agency
ARRS within the research program P2-0359.
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