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ABSTRACT
Complex networks of real-world systems are believed to be
controlled by common phenomena, producing structures far
from regular or random. These include scale-free degree dis-
tributions, small-world structure and assortative mixing by
degree, which are also the properties captured by different
random graph models proposed in the literature. However,
many (non-social) real-world networks are in fact disassor-
tative by degree. Thus, we here propose a simple evolving
model that generates networks with most common proper-
ties of real-world networks including degree disassortativity.
Furthermore, the model has a natural interpretation for ci-
tation networks with different practical applications.

Categories and Subject Descriptors
I.6.4 [Computing Methodologies]: Simulation and Mod-
eling—Model validation and analysis; E.2 [Data Struc-
tures]: Graphs and networks

General Terms
Theory, Measurement, Experimentation

Keywords
Complex networks, graph models, degree mixing, clustering,
citation networks

1. INTRODUCTION
Networks are the simplest representation of complex sys-

tems of interacting parts. Examples of these are ubiquitous
in practice, including large social networks [5], information
systems [18] and cooperate ownerships [22], to name just a
few. Despite a seemingly plain form, real-world networks re-
veal characteristic structural properties that are absent from
regular or random systems [23, 2]. Thus, networked systems
are believed to be controlled by common phenomena.

Scale-free degree distributions [2], small-world phenom-
ena [23], degree mixing [14] (i.e., degree correlations at links’
ends) and existence of communities [6] (i.e., densely linked
groups of nodes) are perhaps among most widely analyzed
properties of large real-world networks. Note that commu-
nity structure implies assortative (i.e, positively correlated)
mixing by degree [16], which can be seen as a tendency of
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hubs (i.e., highly linked nodes) to cluster together. The
above are also the properties captured by many random
graph models proposed in the literature [9, 11, 13, 24].

However, most (non-social) networks deviate from this fig-
ure. Biological and technological networks are in fact degree
disassortative (i.e., negatively correlated), while different in-
formation networks often reveal no clear degree mixing [14,
7] (see Figure 1). Thus, we here propose an evolving random
graph model based on the link copying mechanism [9]. Each
newly added node explores the network using the burning
process in [11], while links of the visited nodes are copied
independently of the latter. The model generates scale-free
small-world networks with community structure and also de-
gree disassortativity. Furthermore, it has a natural interpre-
tation for citation networks. The above process imitates an
author of a paper including references into the bibliography
(i.e., its citation dynamics), which enables different practical
applications in bibliometrics (see Section 3.2).

The rest of the paper is structured as follows. Section 2
introduces the proposed (Citation) model, while a thorough
analysis is given in Section 3. Section 4 concludes the paper.

2. THE CITATION MODEL
Let a network be represented by a simple graph G(N,L),

where N is the set of nodes, |N | = n, and L is the set of
links, |L| = m. Next, let Γi be the set of neighbors of node
i ∈ N and let ki be its degree, ki = |Γi|. Last, let k be the
mean degree and kN the mean neighbor degree.

Proposed graph model is based on the burning process
of Forest Fire model [11], which we introduce first. Due to
simplicity, the model is presented for undirected networks.

Let p be the burning probability, p ∈ [0, 1
2
) (see below).

Initially, the network consists of a single node, while for each
newly added node i, the burning process proceeds as follows.

Figure 1: Data mining part of Cora citation net-
work [12] with highlighted hubs (i.e., 1% of most
highly linked nodes) that are scattered across the
network. (Node sizes are proportional to degrees.)
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Figure 2: Schematic representation of linking dynamics of different graph models. (a) In Forest Fire
model [11], newly added node i selects an ambassador a (blue node) uniformly at random and links to it
(solid arrow). Next, some of its neighbors are taken as the ambassadors (e.g., y and z) and the process re-
peats. (b) Butterfly model [13] forms links only with some fixed probability (dashed arrows). (c) In Copying
model [9], node i links to a and also to some of its neighbors x, y, z (green nodes). (d) Proposed Citation
model forms links only with the neighbors of the ambassador a (e.g., x and y), however, i can still link to a.

(1) i chooses an ambassador a ∈ N uniformly at random
(we say that i burns a) and links to it.

(2) i randomly selects (at most) xp neighbors of a that were
not yet burned a1, . . . , axp ∈ Γa and links to them. (xp is
sampled from a geometric distribution with mean p

1−p .)

(3) a1, . . . , axp are taken as the ambassadors of i (step (2)).

Since each node can be visited at most once, the burning
process surely converges. Thus, to generate a network with
n nodes, the model repeats the above procedure n−1 times.

Forest Fire model produces shrinking diameters and den-
sification phenomena observed in temporal networks [11].
Furthermore, generated networks are scale-free and small-
world, and reveal a pronounced community structure. How-
ever, in contrast to many real-world networks, the model
gives degree assortative networks (see Section 3).

The model also has a natural interpretation for citation
networks. Burning process imitates an author of a paper
including references into the bibliography (i.e., citation dy-
namics). Author first reads a related paper, or selects the
paper that triggered the research, and cites it (step (1)).
Author then considers its bibliography for other related pa-
pers (step (2)). Some of these are further considered and
also cited, while the author continues as before (step (3)).
Nevertheless, Forest Fire model fails to reproduce some of
the properties of citation networks (e.g., degree mixing).

Note that the described process assumes that authors read,
or at least consider, all the papers they cite. However, this
is indeed not the case [17]. For example, seminal work on
random graphs conducted by Erdös and Rényi [4] is per-
haps among most widely cited papers in network science
literature. Although, presumably, only a smaller number
of authors have actually read the original paper. As the
work is widely discussed elsewhere, most authors have just
copied the reference from another paper. On the other hand,
authors also do not cite all the papers they read, though
related to their work. This can be simply due to space lim-
itations. Nevertheless, a paper can still be read thoroughly,
with many of its references further considered and cited.

Examples suggest that the papers that authors read or cite
are selected due to two, not necessarily dependent, processes.
We thus propose a Citation model that adopts the above
burning procedure to traverse the network, while the links
are formed according to another independent process.

Let q be the linking probability, q ∈ [0, 1) (see below).
Initially, the network consists of a single link, while for each
newly added node i, the model proceeds as follows.

(1) i chooses an ambassador a ∈ N uniformly at random.

(2) i randomly selects (at most) xp neighbors of a that were
not yet burned a1, . . . , axp ∈ Γa.

(3) i randomly selects (at most) xq neighbors of a that were
not yet linked j1, . . . , jxq ∈ Γa and links to them.

(4) a1, . . . , axp are taken as the ambassadors of i (step (2)).

Details are the same as before. Again, the process surely
converges, while the entire procedure is repeated n−2 times.

Let s be the mean number of burned nodes (i.e., ambas-
sadors). A node selects p

1−p ambassadors on each step, thus,

s ≤
∞∑
x=0

(
p

1− p

)x
≤ 1− p

1− 2p
. (1)

A node will fail to form any link (i.e., become isolated)
with probability (1−q)s. Although isolated nodes are a com-
mon property of real-world networks, they are often ignored
in practice or the network is even reduced to the largest con-
nected component. Thus, for the analysis here, we repeat
the procedure until the largest component has n nodes.

Since a node forms q
1−q links on each step, expected net-

work degree is (with 1−(1− q)s correction for isolated nodes)

k ≤ 2qs

1− q − (1− q)s+1 . (2)

Although equations (1) and (2) are only valid in the limit
of large network size, the bounds are rather tight for large
enough n (see Figure 3). Thus, given network degree k and
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Figure 3: Analysis of Citation model at different p
and q = 0.75 (left), and p = 0.3 and different q (right).
Solid lines show theoretical bounds in equations (1)
and (2). (Results are estimates of the mean over
100 network realizations with different n. Shaded
regions correspond to likely parameter values [10].)
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Figure 4: Comparison of graph models at different p and q = 0.75 (top), and p = 0.3 and different q (bottom).
(Results are estimates of the mean over 100 network realizations with n = 1000. See also caption of Figure 3.)

fixed q, one can solve the system for p, which can be used
for parameter estimation in practice (see Section 3.2).

Citation model generates small-world networks with scale-
free degree distribution and community structure (see Sec-
tion 3.1). Furthermore, in contrast to Forest Fire model,
resulting networks are degree disassortative. We stress that
the key factor here is that newly added nodes do not (nec-
essarily) link to their ambassadors, which in fact produces
degree assortativity. Since a node copies the links of its
ambassadors, linking to them obviously promotes assorta-
tivity. However, in the absence of an explicit process intro-
ducing assortativity, (scale-free) networks are expected to
be degree disassortative [8]. The analysis in Section 3 thus
also includes a variant of Forest Fire model denoted Butter-
fly model, where a node links to its ambassadors only with
probability q (considered in [13]), as well as a variant of the
proposed Citation model denoted Copying model, where a
node links to each ambassador [9] (for details see Figure 2).

Other authors have proposed models very similar to ours [21,
9, 11, 13, 24]. Nevertheless, these either do not adopt the
burning process to traverse the network or the model nec-
essarily links the nodes to their ambassadors, which results
in degree assortativity. More precisely, the set of the linked
nodes is always a subset of the nodes burned (or vice versa).
However, in the case of Citation model, these two sets can
intersect arbitrarily, while they can also be disjoint.

3. EXPERIMENTAL ANALYSIS
Section 3.1 conducts an empirical analysis of Citation model

and several alternatives proposed in the literature (see Sec-
tion 2). Next, networks constructed with different models
are compared against a larger citation network (Section 3.2).

3.1 Analysis of the model
Figure 4 shows basic statistics of the networks generated

with different graph models for parameters p and q shown
(see Section 2). Most notably, only the proposed Citation
model gives degree disassortative networks measured by the
mixing coefficient r ∈ [−1, 1] [14] (see Figures 4(b) and 4(g)).
r is simply a Pearson correlation coefficient of degrees at
links’ ends. Thus, r � 0 for Citation model, while r � 0
for Forest Fire and Butterfly models. Observe that Copying

model also generates networks with r < 0 for very large
p and q, however, these are much denser than comparable
real-world networks (see Figures 4(a) and 4(f)).

On the other hand, all models give small-world networks
with short mean distance between the nodes l [1] (see Fig-
ures 4(c) and 4(h)) and high transitivity measured by the
clustering coefficient C ∈ [0, 1] [23] (see Figures 4(d) and 4(i)).
Note that C increases with p, while q has little effect on C.
Furthermore, all models generate networks with clear com-
munity structure according to modularity Q ∈ [0, 1] [15],
whereQ is estimated using a fast multi-stage optimization [3]
(see Figures 4(e) and 4(j)). Although Q decreases with in-
creasing p or q in the case of Citation and Copying mod-
els, the values are somewhat comparable to those observed
in real-world networks. Forest Fire and Butterfly models,
however, appear to overestimate Q for selected p and q.

Networks constructed with Citation model also reveal scale-
free degree distributions [2] (see Figure 5(a)), thus, the model
generates most common properties of real-world networks.

3.2 Cora citation network
Due to a natural interpretation for citation networks (see

Section 2), the proposed model has different practical ap-
plications in bibliometrics. We here analyze author citation
dynamics based on the famous Cora dataset [12] that con-
tains computer science papers collected from the web, and
also the references automatically parsed from the bibliogra-
phies of the papers. We extract a citation network with
n = 23166, while other statistics are reported in Table 1.

Table 1 also includes the networks generated with Citation
and Forest Fire models, where parameters p and q were es-

Table 1: Comparison of Cora citation network and
those constructed with different graph models for p
and q shown. (Results are estimates of the mean
over 100 network realizations with n = 23166.)

Model p q m k r

Forest Fire 0.462 - 88828 7.669 0.211
Citation 0.369 0.593 89888 7.760 −0.047

Cora 89157 7 .697 −0 .055



timated as described in Section 2. Note that Citation model
well matches the disassortative mixing regime in Cora cita-
tion network (observe also a similar trend in Figure 5(b)),
while Forest Fire model gives degree assortative networks.
(For comparison based on other network properties see [19].)

Recall that s in equation (1) can be seen as the number
references actually read by an author of some paper. Thus,
the fraction of papers considered by the authors, relative to
the number of all papers cited, can be estimated to 2s/k =
0.66. The value is much larger than expected [17], however,
the results are largely influenced by an automatic sampling
procedure [12] (i.e., on average, only k/2 = 3.85 references
of each paper are also included in the network).

4. CONCLUSION
The paper proposes a simple graph model that generates

networks with most common properties of real-world net-
works and, in contrast to many other models, dissasortative
degree mixing. The model also has a natural interpretation
for citation networks with different practical applications.

Due to simplicity, the analysis in the paper is based on
undirected networks. However, this presents a serious limi-
tation, especially for citation networks considered here. Fu-
ture work will extend the analysis to directed and also other
types of networks, while more reliable datasets will be used
for the analysis of author citation dynamics (based on DBLP
and WoS data). Furthermore, the model will be rigorously
compared against others with similar characteristics [20].
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[18] L. Šubelj and M. Bajec. Community structure of
complex software systems: Analysis and applications.
Physica A, 390(16):2968–2975, 2011.
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