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Abstract. Label propagation has proven to be a fast method for detect-
ing communities in complex networks. Recent work has also improved
the accuracy and stability of the basic algorithm, however, a general
approach is still an open issue. We propose different label propagation
algorithms that convey two unique strategies of community formation,
namely, defensive preservation and offensive expansion of communities.
Furthermore, the strategies are combined in an advanced label propaga-
tion algorithm that retains the advantages of both approaches; and are
enhanced with hierarchical community extraction, prominent for the use
on larger networks. The proposed algorithms were empirically evaluated
on different benchmarks networks with planted partition and on over 30
real-world networks of various types and sizes. The results confirm the
adequacy of the propositions and give promising grounds for future anal-
ysis of (large) complex networks. Nevertheless, the main contribution of
this work is in showing that different types of networks (with different
topological properties) favor different strategies of community formation.

Keywords: Network communities, label propagation, defensive preser-
vation, offensive expansion.

1 Introduction

Complex networks commonly comprise of local structural modules or communi-
ties that are groups of nodes strongly connected within and only weakly con-
nected with the rest of the network. These modules play crucial roles in many
real-world systems [15, 37], moreover, they provide an important insight into
structure and function of (large) complex networks [37, 45, 27].

Over the last decade the research community has shown a considerable in-
terest in detecting communities in real-world networks. Thus, a number of ap-
proaches has been presented in the literature. In particular, approaches opti-
mizing modularity1 Q [7, 6, 5], graph partitioning [14, 39, 38] and spectral [9, 33]
algorithms, statistical methods [36], algorithms based on dynamic processes [40,
43, 38, 42], overlapping, hierarchical and multiresolution methods [37, 16, 42], and
other [29, 30] (for a thorough review see [11]).

? Corresponding author: lovro.subelj@fri.uni-lj.si.
1 Significance of communities due to a selected null model [35].



Due to the size of large real-world networks recent research has focused on
developing scalable algorithms that can be applied to networks with several
millions of nodes and billions of edges. Raghavan et al. [40] proposed using
simple label propagation, where labels are propagated among nodes until an
equilibrium is reached. The main advantage of the label propagation is its near
linear time complexity (in the number of edges of the network); however, due
to the algorithm’s simplicity, the accuracy of revealed community structure is
often not state-of-the-art.

The basic algorithm was further analyzed in [47] and refined into a modular-
ity optimization algorithm in [5, 29]. Extension to directed networks was consid-
ered in [28]. Furthermore, Leung et al. [28] improved the basic label propagation
by applying label hop attenuation and node preference (i.e. node propagation
strength). We proceed their work in developing two unique strategies of commu-
nity formation, namely, defensive preservation of communities, where preference
is applied to the core of each community, and offensive expansion of commu-
nities, where preference is applied to the border of each community. Moreover,
the two strategies are combined into an advanced label propagation algorithm
(denoted K-Cores) that preserves the advantages of both approaches. For the
use with larger networks, we also present two different manners of hierarchical
community extraction.2

Proposed algorithms were rigorously analyzed on different benchmark net-
works with planted partition and on a large number of real-world networks of
various types and sizes. The results justify the adequacy of the propositions and
give promising grounds for future analysis of (large) complex networks. Fur-
thermore, the analysis also shows that the appropriateness of the strategies of
community formation strongly correlates with the type of the network (i.e. with
its topological properties).

The rest of the article is structured as follows. Section 2 gives a formal presen-
tation of label propagation and briefly surveys relevant subsequent refinements
of the basic algorithm. Defensive and offensive strategies of community forma-
tion, and corresponding algorithms, are presented and discussed in section 3.
Empirical evaluation with discussion is done in section 4 and conclusion in sec-
tion 5.

2 Label propagation and advances

Let the network be represented by an undirected (multi-)graph G(N,E), where
N is the set of nodes and E is the set of edges. Furthermore, let wnm be the
weight of the edge between nodes n and m, n,m ∈ N . Next, denote cn to be the
community (label) of node n and Nn the set of its neighbors. Moreover, denote
N l
n to be the set of neighbors of n that share label l.

Label propagation algorithm (LPA) [40] reveals network communities by em-
ploying the following procedure. At first each node n ∈ N is labeled with an

2 The work presented in this article was already (partially) presented in [46].



unique label, cn = ln. Next, at each iteration, each node adopts the label shared
by most of its neighbors. Hence,

cn = argmax
l
|N l

n|, (1)

where in the case of ties one of the labels is selected at random (node n retains
its current label, when it is among most frequent in Nn). The process continues
until none of the labels change anymore, i.e. an equilibrium is reached. During
the course of the algorithm, densely connected sets of nodes form a consensus
on some particular label; thus, at the end, nodes sharing the same label are
classified into the same community.

Leung et al. [28] have observed that basic label propagation applied to large
(web) graphs commonly produces one major community that occupies most of
the nodes. However, they have shown that the emergence of a major community
can be eliminated by using label hop attenuation technique. Each label ln has
associated an additional score sn (initially set to 1) that decreases by δ after each
propagation (δ is an attenuation ratio). When sn reaches 0, the label ln no longer
propagates onward (see Eq. (4)), which successfully eliminates the emergence of
a major community.

Label hop attenuation can be rewritten into an equivalent form that allows
altering δ during the course of the algorithm [28]. One keeps the label distance
from the origin dn (initially set to 0) that is updated after each propagation.
Hence,

dn =

(
min

m∈N cn
n

dm

)
+ 1, (2)

when the score sn is then

sn = 1− δdn. (3)

Further analysis in [28] has revealed that label hop attenuation has to be
coupled with node preference fm (i.e. node propagation strength), in order for the
algorithm to improve on the basic label propagation. Thus, the label propagation
updating rule in Eq. (1) is transformed into

cn = argmax
l

∑
m∈N l

n

fαmsmwnm, (4)

where α is a parameter of the algorithm. Leung et al. [28] have experimented with
node preference equal to the degree of the node (i.e. fm = degm and α = 0.1),
however, no general analysis was conducted.

The updating rule of label propagation (Eq. (1)), or its refinements (Eq. (4)),
might prevent the algorithm from converging [40]. Imagine a bipartite network
with two sets of nodes, i.e. red and blue nodes. Let, at some iteration of the
algorithm, all red nodes share label lr and all blue nodes share label lb. Due to
the bipartite structure of the network, at the next iteration, all red, blue nodes



will adopt label lb, lr respectively. Furthermore, after the next iteration, all nodes
will recover their original labels, failing the algorithm to converge.

The problem can be avoided by using asynchronous updating [40]. Nodes are
no longer updated all together, but sequentially, in a random order. Thus, when
node’s label is updated, (possibly) already updated labels of its neighbors are
considered (in contrast to synchronous updating that considers only labels from
the previous iteration). All of the algorithms, presented in the following section,
use such asynchronous updating of nodes.

3 Defensive and offensive label propagation

In this section we present different algorithms that employ two unique strategies
of community formation, namely, defensive preservation and offensive expansion
of communities. First, we briefly present a dynamic hop attenuation technique
in section 3.1. Next, section 3.2 introduces and formally discusses the two strate-
gies and associated algorithms (denoted dDaLPA and oDaLPA respectively).
Last, section 3.3 presents an advanced label propagation algorithm (denoted K-
Cores) that combines the two strategies in an iterative manner, thus retaining
the advantages of both approaches.

3.1 Dynamic hop attenuation

Label hop attenuation has proven to be a reliable technique for prevention of
emergence of a major community (section 2). Still, it is not immediately evident
what should the value of attenuation ratio δ be. In [28] authors have obtained
good results with values around 0.1, however, only a limited set of networks was
considered.

We propose a dynamic hop attenuation technique based on the hypothesis3

that hop attenuation should only be employed when a label, or a set of labels,
rapidly occupies a large portion of the network (which could potentially result
in a formation of a major community). Otherwise, the restriction should be (al-
most) completely relaxed to allow label propagation to reach the equilibrium
unrestrained. The technique would thus retain the dynamics of label propaga-
tion, but still successfully prevent the emergence of a major community.

We employ the following hop attenuation strategy. After each iteration (i.e.
sweep through all the nodes) δ is set to the proportion of nodes that changed their
labels4 (on the first two iterations δ is set to 0.5 and 0.1 respectively). In practice,
this results in higher values of δ in the early iterations of the algorithm, which
enables the occurrence of a larger number of (smaller) well defined communities,
when in the later stages δ gradually converges to 0, which refines the communities
and preserves only those strongly depicted in the network topology. Moreover,
empirical analysis on real-world networks shows that such dynamic strategy

3 Similar idea was already discussed in [28].



successfully eliminates the emergence of a major community (the exact results
are omitted).

Note that an additional constraint should be imposed to prevent extremely
large values of δ in the late stages of the algorithm (which, due to the above
discussion, indicates some spurious behavior). Thus, to ensure convergence, when
δ is greater than δmax (e.g. δmax = 0.5), we set it to 0.

3.2 Defensive preservation and offensive expansion of communities

Leung et al. [28] have shown that applying node preference (section 2), to alter
propagation strength or spread from certain nodes, can greatly improve the per-
formance of the basic label propagation. Nevertheless, our empirical analysis has
revealed that different networks favor different strategies for node preference [46].

On small social networks, where high degree nodes reside in the core of each
community (e.g. Zachary’s karate club network [50]), good performance can be
obtained by using degree or eigenvector centrality [12, 13] for node preference.
However, on Girvan and Newman [14] benchmark networks with planted par-
tition, where all nodes have equal degree (on average), the measures render
useless and are outperformed by clustering coefficient [48]. Furthermore, on Lan-
cichinetti et al. [22] benchmark networks superior performance is obtained by
using inverted degree or inverted eigenvector centrality. Interestingly, the mea-
sures thus complement each node’s degree, decreasing the propagation strength
from high degree nodes (and vice-versa). In summary, the analysis has revealed
that none of the considered measures is appropriate for general networks (all
different kinds of networks).

We have observed that, during the course of the algorithm, applying node
preference to the core of each current community (i.e. to its most central nodes)
can significantly increase the performance on a wide range of real-world networks.
Furthermore, the strategy results in a great ability of detecting communities,
even when they are only weakly defined. On the other hand, applying node
preference to the border of each current community (i.e. to its edge nodes) results
in an extremely accurate detection, expanding communities that are strongly
depicted in the network topology.

Based on above observations we propose two algorithms that convey two
unique strategies of community formation. The algorithms estimate the core
(and border) of each (current) community by means of the diffusion over the
network; and are denoted defensive and offensive diffusion label propagation
algorithm (dDaLPA and oDaLPA respectively). Let pn ∈ (0, 1) be a value for
node n ∈ N thus that nodes in the core of the community have higher values
of pn than border nodes. The defensive algorithm dDaLPA applies preference
(i.e. propagation strength) to the core of each community, i.e. fαn = pn, and the

4 The proportion of nodes that change their labels on the first five iterations roughly
follows the sequence 90%, 30%, 10%, 5%, 3% [46] (on networks of moderate size).



Fig. 1. Comparison of defensive and offensive label propagation on two real-world
networks (see Table 1). Revealed communities are shown with pentagonal nodes, when
the sizes (and colors) of nodes are proportional to the sizes of communities. Defensive
propagation produces a larger set of communities that are (on average) considerably
smaller than those revealed by the offensive propagation.

updating rule in Eq. (4) rewrites to

cn = argmax
l

∑
m∈N l

n

pmsmwnm. (5)

On the other hand, the offensive version oDaLPA applies preference to the
border of each community, i.e. fαn = 1− pn, and the updating rule becomes

cn = argmax
l

∑
m∈N l

n

(1− pm)smwnm. (6)

During the course of the algorithm, values pn are estimated using random walks
within each current community. Let pn be the probability that a random walker,
utilized on the community labeled with cn, visits node n (due to simplicity, we
assume that community features connectedness). pn can then be computed as

pn =
∑

m∈N cn
n

pm/deg
cn
m , (7)

where degcnm is the intra-community degree of node m (cm = cn). Besides deriv-
ing an estimate of the core and border of each community, the rationale here is
to formulate label propagation (i.e. diffusion) within each of the current commu-
nities. Thus, opposed to the algorithm in [28], the main novelty is in considering
(current) communities, found by the algorithm, to estimate the (current) state
of the label propagation process and then to adequately alter the dynamics of
the process.

Defensive and offensive label propagation algorithms result in two unique
strategies of community formation, namely, defensive preservation and offensive



expansion of communities. The defensive algorithm quickly establishes a larger
number of strong community cores (in the sense of Eq. (5)) and is able to defensi-
bly preserve them during the course of the algorithm. This results in an immense
ability of detecting communities, even when they are only weakly defined in the
network topology. On the other hand, the offensive approach produces a much
smaller set of communities (of various sizes). Laying the pressure on the edge of
each community expands (i.e. enlarges) those that are strongly depicted in the
network topology. This constitutes a more natural (offensive) struggle among
communities and results in a great accuracy of the communities revealed.

Comparison of the approaches on two real-world networks is shown in Fig. 1;
and for pseudo-code of the algorithms see Alg. 1.

Algorithm 1 Defensive label propagation algorithm (dDaLPA).

Input: Undirected graph G(N,E) with weights W
Output: Communities C (i.e. node labels)
δ ← 0.5
for n ∈ N do
cn ← ln {Unique label.}
pn ← 1/|N |
dn ← 0

end for
while not converged do

shuffle(N)
for n ∈ N do
cn ← argmaxl

∑
m∈N l

n
pm(1− δdm)wnm {1− pm instead of pm for oDaLPA.}

pn ←
∑

m∈Ncn
n
pm/deg

cn
m {degm instead of degcnm for oDaLPA.}

if cn has changed then
dn ← (minm∈Ncn

n
dm) + 1

end if
end for
δ ← proportion of labels changed {δ ← 0.1 at the first iteration.}
if δ ≥ δmax then
δ ← 0 {Ensuring convergence (δmax is fixed to 0.5).}

end if
end while
return C {Returns (relabeled) communities that feature connectedness.}

3.3 Combining defensive and offensive propagation

Defensive and offensive label propagation (section 3.2) convey two unique strate-
gies of community formation. An obvious improvement would be to combine the
strategies, thus retaining the strong detection ability of the defensive approach
and high accuracy of the offensive strategy. However, simply using the algorithms
one after another does not attain the desired properties – any label propagation



Fig. 2. Schematic representation of K-Cores algorithm.

algorithm, being run until convergence, finds a local optimum (i.e. local equilib-
rium) that is hard to escape from.

Raghavan et al. [40] have already discussed the idea (however, in different
context) that label propagation could be improved, if one had a priori knowledge
about community cores. Core nodes could then be labeled with the same label,
leaving all the other nodes labeled with an unique label. During the course of the
algorithm, the (uniquely labeled) nodes would tend to adopt the label of their
nearest attractor (i.e. community core) and thus join its community. This would
improve the algorithm’s stability [40] and also the accuracy of the identified
communities (section 4).

The defensive and offensive label propagation algorithms are thus combined
in the following manner (Fig. 2). First, the defensive strategy is applied, to pro-
duce initial estimates of the communities and to accurately detect their cores. All
border nodes of each community are then relabeled (labeled with unique labels),
so that (approximately) one half of the nodes retain their original label. Next, the
offensive strategy is applied, which refines the community cores and accurately
detects also their borders. Relabeling and offensive refinement are then repeated
until the number of communities decreases. Such combined strategy preserves
advantages of both, defensive and offensive, label propagation (section 4) and is
denoted K-Cores5 algorithm (due to its resemblance to a well-known K-Means
algorithm [31]).

The core (and border) of each community is again estimated by means of
(diffusion) values pn (section 3.2). Thus, within the algorithm, the node n is

5 The term should not be confused with k-core [44] that denotes the maximal subgraph
in which each node has degree at least k.



relabeled due to the following rule,

cn =

{
cn for pn > mcn (8a)

ln for pn ≤ mcn , (8b)

where mcn is the median of values pn, for nodes in the community cn, and ln
is an unique label. Hence, the core nodes retain their original labels, when all
border nodes are relabeled.

Schematic representation of the algorithm is depicted in Fig. 2; and for the
pseudo-code of the algorithm see Alg. 2. For a further discussion on all presented
algorithms see [46].

Algorithm 2 K-Cores algorithm.

Input: Undirected graph G(N,E) with weights W
Output: Communities C (i.e. node labels)
C ← dDaLPA(G,W ) {Defensive label propagation.}
while |C| decreases do

for c ∈ C do
mc ←median({pn| n ∈ N ∧ cn = c}) {Retain community cores.}
for n ∈ N and cn = c do

if pn ≤ mc then
cn ← ln {Unique label.}
pn ← 1/|N |

end if
dn ← 0

end for
end for
C ← oDaLPA(G,W ) {Offensive label propagation.}

end while
return C {Returns best communities found.}

4 Empirical evaluation and discussion

In this section we present and discuss results of the empirical evaluation of the
proposed algorithms. Section 4.1 gives results of the analysis on benchmark net-
works with planted partition, when the results on real-world network are reported
in section 4.2. For the use with larger networks, we also briefly present and empir-
ically compare two manners of hierarchical community detection in section 4.3.

The results are assessed using two measures of community structure, namely,
Normalized Mutual Information NMI [8] and modularity Q [35]. The latter mea-
sures the relative significance of the communities due to a selected null model.
Let Anm denote the number of edges incident to nodes n,m ∈ N and let Pnm be
the expected number of incident edges in the null model. The modularity then



reads

Q =
1

2|E|
∑

n,m∈N
(Anm − Pnm) δ(cn, cm), (9)

where cn is the identified community (label) for node n ∈ N and δ is the Kro-
necker delta. The modularity thus measures the fraction of the difference between
the number intra-community edges and the expected number of edges in the null
model (Q ∈ [−1, 1]). Commonly a random graph with the same degree distribu-
tion as the original is selected for the null model. Hence, Pnm = degndegm

2|E| .

Furthermore, the analysis on networks with planted partition is conducted
using Normalized Mutual Information NMI [8]. Let C be the partition (i.e. com-
munities) extracted by some algorithm and let P be the planted partition of the
network (corresponding random variables are C and P respectively). The NMI
of C and P is then

NMI =
2I(C,P )

H(C) +H(P )
, (10)

where I(C,P ) is the mutual information of the partitions, I(C,P ) = H(C) −
H(C|P ), and H(C), H(P ) and H(C|P ) are standard and conditional entropies.
NMI of identical partitions equals 1, and is 0 for independent partitions.

4.1 Networks with planted partition

The proposed algorithms were first analyzed on four different types of Lanci-
chinetti et al. [22] benchmark networks with planted partition. The results are
shown in Fig. 3.

The analysis clearly depicts the difference between defensive and offensive la-
bel propagation. The offensive approach (oDaLPA) performs considerably better
than the basic label propagation (LPA) and can still accurately detect commu-
nities, when LPA already fails. On the other hand, the defensive propagation
(dDaLPA) does not detect communities as accurately as the offensive approach,
and LPA on larger networks, but still reveals communities, even when they are
only weakly defined. Furthermore, K-Cores algorithm outperforms all other ap-
proaches in all but one case. Note that the algorithm retains the advantages of
both defensive and offensive approach, still, the performance does not simply
equal to the upper-hull of those for dDaLPA and oDaLPA.

The algorithms were also applied to a random graph à la Erdös-Rényi [10]
that (presumably) has no community structure (Fig. 4). However, the defensive
label propagation still reports communities, when the average degree is small
enough. Nevertheless, further analysis reveals that defensive label propagation
is still a preferred approach on a wide range of real-world networks (section 4.2).

As K-Cores algorithm is initialized using the defensive propagation, and best
communities are reported at the end, the performance for K-Cores on a random
graph is similar to that for dDaLPA. However, if we discard the initial commu-
nities obtained by dDaLPA (i.e. K-Cores1 algorithm), the results correspond to
those for LPA and oDaLPA that reveal no community structure.



Fig. 3. Comparison of the proposed algorithms on Lancichinetti et al. [22] benchmarks
networks with planted partition. The network sizes equal 1000 and 5000 nodes respec-
tively; and communities comprise of up to 50 and 100 nodes respectively. The results
were averaged over 100 realizations of the benchmarks networks.

Fig. 4. Comparison of the proposed algorithms on a random graph à la Erdös-Rényi [10]
with 1000 nodes (the results were averaged over 10 runs).



4.2 Real-world networks

The algorithms were further analyzed on over 20 real-world networks of moder-
ate size (Table 2). Due to a large number of networks considered, the detailed
description is omitted (see Table 1). However, the set includes different com-
munication, social, biological, web, (author) collaboration, Internet and other
networks. Due to simplicity, all networks are considered as unweighted and undi-
rected, i.e. all weighted or directed edges are treated as simple undirected edges
(same holds for networks in section 4.3).

We also introduce a new type of networks denoted software networks (sort
of component dependency networks [49]). Here nodes represent a set of classes
of some software system, written in an object-oriented programing language,
and edges represent relations among them. Two classes A and B are defined as
related when B extends or implements A, when B contains a field of type A
or when A, B contains a method that returns, requires an object of type B, A
respectively. The hypothesis here is that network communities would correspond
to software packages, which could result in numerous applications in software
engineering domain (Fig. 5). In this article we consider the ground case, where
networks are represented with simple undirected and unweighted graphs6.

Fig. 5. Communities revealed in javax software network by applying K-Cores algo-
rithm. The sizes of nodes correspond to the sizes of communities; and the widths of the
edges correspond to the number of inter-community edges (due to clarity, weakly repre-
sented nodes and edges were discarded). Text shows the distribution of javax packages
within the communities, where all weakly represented packages were omitted.

6 The networks were obtained by parsing the documentation of the corresponding soft-
ware. Thus, due to various reasons, some false relations might have been introduced.



Table 1. Networks used for the analysis of community detection algorithms.

Network Description Reference

uni Emails within an university. [17]
enron Emails within Enron. [25]

football American college football league. [14]
jazz Network of jazz musicians. [15]
wiki Voting network of Wikipedia. [24]

epinions Epinions web of trust. [41]

yeast Yeast protein interactions. [20]

elegans Nematode Caenorhabditis elegans. [21]

gnutella Gnutella peer-to-peer network. [26]

blogs Weblogs on U.S. politics. [2]

genrelat General Relativity archive 2003. [26]
codmat3 Condensed Matter archive 2003. [32]
codmat5 Condensed Matter archive 2005. [32]

hep High Energy Physics archive 2003. [26]
astro Astro Physics archive 2003. [26]

engine Google App Engine library.
jung JUNG graph and network library.
javax Java 6 javax namespace.

power Western U.S. power grid. [48]

oregon3 Aut. syst. of Internet 2003 (Oregon). [25]
oregon6 Aut. syst. of Internet 2006 (Oregon). [34]

nec nec web overlay map. [19]

amazon Amazon co-purchasing network. [23]

ndedu Web graph of nd.edu domain. [3]

road Roads in Pennsylvania. [27]

google Web graph of Google. [27]

skitter Aut. syst. of Internet 2005 (Skitter). [25]

movie Movie actors collaborations. [4]

nber NBER patents citations. [18]

live Live Journal friendships. [27]

webbase Web graph from WebBase. [1]



Table 2. Mean modularities Q for different label propagation algorithms (averaged
over 100 to 100000 runs). The highest values of Q are shown with solid font; and
underlined values correspond to the highest values among only dDaLPA and oDaLPA.

Type Network Nodes Edges LPA dDaLPA oDaLPA K-Cores

Communication
uni 1133 5451 0.364 0.481 0.389 0.518

enron 36692 367662 0.355 0.514 0.380 0.516

Social

football 115 616 0.592 0.593 0.595 0.600
jazz 198 2742 0.346 0.418 0.377 0.418
wiki 7115 103689 0.056 0.195 0.046 0.202

epinions 75879 508837 0.106 0.288 0.111 0.291

Protein yeast 2114 4480 0.665 0.733 0.720 0.793

Metabolic elegans 453 2025 0.122 0.172 0.131 0.173

Peer-to-peer gnutella 62586 147892 0.338 0.412 0.387 0.447

Web blogs 1490 16718 0.400 0.424 0.424 0.426

Collaboration

genrelat 5242 28980 0.737 0.769 0.779 0.820
codmat3 27519 116181 0.596 0.611 0.627 0.687
codmat5 36458 171736 0.548 0.575 0.590 0.648

hep 12008 237010 0.484 0.585 0.518 0.585
astro 18772 396160 0.326 0.538 0.337 0.538

Software
engine 139 243 0.689 0.724 0.726 0.747
jung 436 1303 0.611 0.587 0.623 0.631
javax 2089 7934 0.723 0.687 0.725 0.768

Power power 4941 6594 0.595 0.690 0.698 0.820

Internet
oregon3 767 3591 0.302 0.210 0.354 0.210
oregon6 22963 48436 0.498 0.347 0.541 0.347

nec 75885 357317 0.683 0.628 0.688 0.736

Comparison of the algorithms on real-world networks (Table 2) firstly con-
firms the adequacy of the K-Cores algorithm that obtains highest modularity on
all but two Internet networks. Note that both dDaLPA and oDaLPA also out-
perform the basic LPA in most cases. Moreover, the analysis clearly separates
different types of networks due to the preferred strategy of community forma-
tion. For instance, social and communication networks clearly favor defensive
preservation of communities, due to high density of such networks (and rather
weakly defined communities). On the other hand, sparse software or Internet net-
works, with longer paths among nodes, obviously prefer the offensive expansion
of communities. The middle case is represented by the considered collaboration
networks. On smaller networks that are relatively sparse (genrelat, codmat3 and
codmat5 network) the offensive approach prevails. However, on larger networks
(hep and astro network), with significantly higher degrees then the former, the
defensive algorithm is superior. In summary, denser networks (with higher av-



erage degrees) prefer the defensive preservation, whereas sparser networks (with
lower average degrees) favor the offensive expansion of communities.

4.3 Analyzing large networks

Last, we also briefly present and empirically evaluate two different manners of hi-
erarchical community investigation (prominent for the use with larger networks).
Besides LPA and K-Cores algorithm, we consider the following approaches.

Basic diffusion and propagation algorithm (DPA) [46] is an optimized version
of K-Cores that scales significantly better then the basic algorithm. Furthermore,
hierarchical diffusion and propagation algorithm (DPA+) represents a simple hi-
erarchical detection, where the algorithm is recursively applied to the previously
constructed community network7 (the algorithm employs defensive label propa-
gation, and DPA on the last step). Moreover, (general) diffusion and propagation
algorithm (DPA∗) [46] represents a hierarchical core extraction technique, where
the algorithm recursively extracts the core [27] of the network and identifies
whisker communities. For a further discussion on the algorithms see [46].

Table 3. Peak modularities Q and average number of iterations for different label
propagation algorithms (obtained over 1 to 10 runs). Solid values correspond to the
largest values of Q, where missing values could not be obtained due to limited time
resources.

Network Nodes Edges LPA K-Cores DPA DPA+ DPA∗

amazon 0.3M 1.2M 0.681/15 0.783/273 0.700/34 0.883/65 0.856/78

ndedu 0.3M 1.5M 0.838/53 0.891/471 0.860/50 0.897/37 0.901/58

road 1.1M 3.1M 0.552/10 0.847/895 0.626/82 0.985/136 0.883/142

google 0.9M 4.3M 0.801/15 0.889/444 0.820/59 0.962/45 0.967/48

skitter 1.7M 11.1M 0.746/25 - 0.755/126 0.680/52 0.801/76

movie 0.4M 15.0M 0.524/21 - 0.533/147 0.474/39 0.606/71

nber 3.8M 16.5M 0.576/109 - 0.582/336 0.707/112 0.739/308

live 4.8M 69.0M 0.673/100 - 0.548/206 0.683/73 0.688/125

webbase 14.5M 101.0M 0.894/38 - 0.923/114 0.942/43 0.954/39

Algorithms were applied to a set of large real-world networks (Table 3) of
various types (see Table 1), when the analysis on (even) larger networks was
limited due to limited memory resources (i.e. 4 GB of memory). On average, all of
the considered algorithms again perform better then the basic label propagation
(LPA). Furthermore, the hierarchical algorithms (DPA+ and DPA∗) obtain the
highest values of modularity on all of the networks considered, whereas the core
extraction technique (DPA∗) seems more prominent.

7 A network whose nodes represent communities and edges represent edges between
nodes in the original network.



The average number of iterations made by the algorithms8 (Table 3) shows
that “theoretical” approach K-Cores does not scale to larger networks, where
the optimized version DPA is preferred. Note also that hierarchical detection
even decreases the total number of iterations on larger networks, which gives
promising grounds for future analysis of large complex networks.

For a further empirical evaluation and comparison with other label propaga-
tion algorithms reported in the literature see [46].

5 Conclusion

In the article we present different label propagation algorithms that employ two
unique strategies of community formation, namely, defensive preservation and
offensive expansion of communities. The strategies are combined in an advanced
label propagation algorithm that retains the advantages of both approaches.
Furthermore, we also show how the algorithm can be extended to larger networks
using (hierarchical) core extraction. Nevertheless, the main contribution of this
work is in showing that different types of networks (with different topological
properties) favor different strategies of community formation.

Future work will focus mainly on further analyses of defensive and offensive
label propagation, in order to develop an enhanced algorithm that would decide
between defensive and offensive strategy (an intermediate approaches) during
the course of the algorithm. This could result in higher accuracy of the revealed
communities and also in better scalability of the algorithm.
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