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Complex networks of real-world systems are believed to be controlled by common phenomena,
producing structures far from regular or random. Clustering, community structure and assortative
mixing by degree are perhaps among most prominent examples of the latter. Although generally
accepted for social networks, these properties only partially explain the structure of other networks.
We first show that degree-corrected clustering is in contrast to standard definition highly assortative.
Yet interesting on its own, we further note that non-social networks contain connected regions with
very low clustering. Hence, the structure of real-world networks is beyond communities. We here
investigate the concept of functional modules—groups of regularly equivalent nodes—and show
that such structures could explain for the properties observed in non-social networks. Real-world
networks might be composed of functional modules that are overlaid by communities. We support
the latter by proposing a simple network model that generates scale-free small-world networks
with tunable clustering and degree mixing. Model has a natural interpretation in many real-world
networks, while it also gives insights into an adequate community extraction framework. We also
present an algorithm for detection of arbitrary structural modules without any prior knowledge.
Algorithm is shown to be superior to state-of-the-art, while application to real-world networks reveals
well supported composites of different structural modules that are consistent with the underlying
systems. Clear functional modules are identified in all types of networks including social. Our
findings thus expose functional modules as another key ingredient of complex real-world networks.

PACS numbers: 89.75.Hc, 89.75.Fb, 89.20.-a, 87.18.-h

I. INTRODUCTION

Networks are the simplest representation of complex
systems of interacting parts. Examples of these are ubig-
uitous in practice, including social networks [1], infor-
mation systems [2], cooperate ownerships [3] and food
webs [4], to name just a few. Despite seemingly plain
form, real-world networks commonly exhibit complex
structural properties that are absent from regular or ran-
dom systems [5, 6]. Network complexity arises not from
that of individual interactions, but rather from their in-
trinsic collective behavior. Thus, networked systems are
believed to be controlled by common phenomena, which
has been the main focus of network science in the last
decade [5, 7-9]. Nevertheless, our comprehension of real-
world network structure remains to be only partial [10].

Network transitivity or clustering [5, 11], degree mix-
ing [9, 12]—degree correlations of links’ ends—and com-
munity structure [8, 13] are perhaps among most widely
analyzed network properties in physics literature [14, 15].
Communities are usually seen as densely linked groups of
nodes that are only sparsely linked with the rest of the
network [8, 16]. These are, at least in context of social
networks, considered an artifact of triadic closure [17]
or homophily [18, 19], whereas communities also imply
assortative—positively correlated—mixing by degree, as
long as their sizes differ [20]. On the other hand, re-
cent work suggests that network transitivity, rather than
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homophily, is the cause of community structure and de-
gree assortativity in real-world networks [21]. Regardless
of the latter, there is substantial evidence that commu-
nities and assortative mixing appear concurrently with
high clustering, properties also captured by many net-
work models in the literature [12, 22-24].

However, non-social networks greatly deviate from
this picture. Biological and technological networks are
in fact degree disassortative—negatively correlated—
whereas information networks usually exhibit no clear
degree mixing [9, 25]. Moreover, many real-world net-
works contain connected regions of nodes with very low
clustering, where classical definition of community does
not apply (see Fig. 1). Although one can still partition
the network into well separated groups [26], several au-
thors have argued that clear communities emerge only in
some (parts of) real-world networks [27-30]. This poses
an interesting question: “Are there mesoscopic structures
beyond classical communities that could explain for the
properties observed in non-social networks?”.

The main purpose of this paper is to expose functional
modules [30-33]—groups of regularly equivalent [34]
nodes—as a possible answer. Nodes are regularly equiv-
alent if they are linked in the same way to other equiva-
lent nodes (e.g., multi-partite structures). Regular equiv-
alence is a relaxed version of structural equivalence [35]
that demands for the nodes to be linked exactly the same.
Hence, functional modules refer to groups of nodes that
are linked similarly with the rest of the network—have
common neighborhoods—and thus perform the same
function within the underlying system [30, 36]. Both
functional modules and communities can be considered
under a general concept of structural modules [37]—
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FIG. 1. (Color online) Largest connected components of different real-world networks in Table 1. Node sizes are proportional to
degrees, whereas symbols correspond to degree-corrected clustering d that ranges from zero (polygons) to one (circles). Observe
that d is highly assortative, whereas nodes with particularly high or low d are localized in regions that are characteristic within
the underlying system. For example, ignoring nodes with degree one, printing classes in javax software network experience
average clustering of only D = 0.176, while D = 0.602 for visualization classes (above and below, respectively). Similarly, liberal
and conservative blogs in blogs web graph experience D = 0.435 and D = 0.373 (left-hand and right-hand side, respectively).

groups of nodes with common linking patterns—although
some asymmetries exist [30] (e.g., mutual independence).
(Note that communities can also be seen as functional
modules [31, 32]. However, most pronounced functional
modules are disconnected groups of nodes, whereas best
communities are, obviously, connected.)

Structure of the paper is nonstandard. We first ana-
lyze degree and clustering mixing in a large number of
real-world networks of different type and origin (Sec. II).
Analysis reveals that degree-corrected clustering [38] is
in contrast to standard definition highly assortative in
all networks (see Fig. 1)—a distinctive property of real-
world networks that was previously unobserved (to our
knowledge). We further show that most non-social net-
works contain a large number of nodes with cluster-
ing lower than expected at random, which, together
with clustering assortativity, implies connected regions
of nodes with extremely low transitivity. Common intu-
ition of dense communities does not coincide with the lat-
ter, while adequate extraction of communities from these
networks even increases their degree disassortativity.

Functional modules should result in lower clustering
and also degree disassortativity. Thus, we propose a sim-
ple network model that implicitly introduces functional
modules into the network through link copying mecha-
nism [39, 40] that resembles triadic formation [41, 42]
(Sec. III). Each node explores the network using the
burning process of forest fire model [22, 43], whereas links
of visited nodes are copied independently of the latter.
This process has a natural interpretation in many in-
formation, technological and other networks. Model in-
deed generates scale-free small-world networks [5, 7] with
community structure and degree (dis)assortativity, where
clustering and degree mixing are controlled through pa-

rameters. This solves an open problem in network
science—what simple local process produces degree dis-
assortativity in real-world networks (to our knowledge).
We further show that clustering assortativity is related to
the extent of overlap between communities and functional
modules. Higher values correspond to clearer separation
between different structural modules, which appears to
be realized through localization of communities.

The above introduces ’structural-world’ conjecture:
“Real-world networks are composed of functional mod-
ules characterizing different roles within the underlying
system, and locally overlaid by communities based on
some assortative property of the nodes.”. The former
explain degree disassortativity and efficient long-range
navigation—strength of weak ties [17]—whereas the lat-
ter increase the overall clustering and degree assortativ-
ity, and provide for efficient local navigation—weakness
of strong ties [17]. Note that conjecture deviates from
classical comprehension of small-world phenomena [5].

We proceed by presenting an algorithm for detection
of arbitrary structural modules without any prior knowl-
edge like the number of modules (Sec. IV). Algorithm
exploits label propagation [30, 44] to partition the net-
work into modules, whereas each module is further re-
fined independently of others. Algorithm is shown to be
comparable to state-of-the-art in community detection,
and superior in detection of structural modules (App. A).

Sec. V first validates the algorithm on various synthetic
networks with planted partition and random graphs.
Next, application to real-world networks reveals well sup-
ported composites of different structural modules that
are consistent with characteristics of the underlying sys-
tem, and structural-world conjecture. Although (almost)
all networks contain communities, the network structure



is more accurately predicted by considering also other
structural modules. In the case of functional modules,
most apparent examples are found in technological, bio-
logical, and, surprisingly, also classical social networks.
We further use techniques presented in the paper to
also conduct an exploratory analysis of a larger infor-
mation network (Sec. VI). We extract a citation net-
work from Cora dataset [45] that includes computer sci-
ence publications collected from the web. Analysis re-
veals skewed size distribution only in the case of func-
tional modules, which is inconsistent with some earlier
work [46, 47]. Most pronounced functional modules else
mainly arrange in bipartite structures, however, the com-
plexity of linking patterns is much higher than expected.
We conclude the paper in Sec. VII.

II. DEGREE AND CLUSTERING MIXING

Let a network be represented by a simple undirected
graph, with N = {1,...,n} being the set of itrs nodes
and L being the set of its links (denote m = |L|). Also,
let k; be degree of node ¢ and k the average degree.

Table I shows common statistic for 24 real-world net-
works of different size and origin. We consider most types
of networks usually found in the literature, whereas de-
tailed description is omitted here. Networks are ordered
with respect to degree mixing coefficient r [9]. r measures
degree correlations in a network and is just a Pearson cor-
relation coefficient of degrees at links’ ends.
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where o, is standard deviation and the sum goes through
all linked pairs (4, j), r € [—1, 1] [48]. Positive correlation
is indicated by r > 0, which is known as assortative
mixing by degree. Similarly, disassortative mixing refers
to negative correlation or, equivalently, r < 0.

In scale-free networks, which most real-world networks
are, r can be seen as a tendency of hubs [49]—high degree
nodes—to link between themselves. Observing values of
r in Table I one can conclude that the latter is indeed
not the case, as most real-world networks are degree dis-
assortative. Only social networks show strong assorta-
tivity, whereas most information and some technological
networks exhibit no clear degree mixing with r ~ 0.

We proceed with an introduction of node clustering
coefficient ¢ [5]. ¢; measures transitivity around ¢ and is
defined as the fraction of linked neighbors.
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where t; in the number of links among neighbors of i—
the number of closed triads—and (k;) is the number of all
possible links, ¢; € [0,1]. For k; <1, ¢; = 0 by definition.
Transitivity of the entire network can be estimated by
simply averaging over all the nodes, which is known as
(network) clustering coefficient C' [5], C € [0, 1].

C; =

(2)

Clustering coefficient ¢
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FIG. 2. (Color online) Scaling of clustering in degree assor-
tative and disassortative real-world networks (left and right,
respectively). (Nodes with degree at most one are ignored.)

Real-world networks are characterized by much higher
C than expected by chance (see Table I). For example,
random graph a la Erdos-Rényi [50], where links are laid
between nodes with probability p, = k/(n — 1), exhibits
only C = p, in the limit of large n. This is less than 0.02
for almost all networks considered here. Still, in the case
of configuration model [11, 51], where graphs are sampled
from an ensemble with the same degree sequence as the
network, C' = p,. for large enough n [20, 52].

(3, k2 — nk)?
Pc = T8k (3)
Although p. scales as n ™!, it is not necessarily negligible
for networks of moderate size [53] (see below).

Fig. 2 (top) shows scaling of ¢ with respect to node de-
gree in different real-world networks (Table I). Note that
¢ decays with degree resembling a power-law form. Actu-
ally, different authors have observed that ¢ ~ k=% with
a € [0.75,1] in Internet, metabolic, collaboration and
other networks [54-56], whereas the same behavior also
emerges in a hierarchical network [56]. However, Soffer
and Vdzquez [38] have shown that this scaling is actually
due to node degree mixing. This can be motivated by
an observation that hubs would always have low cluster-
ing, as the opposite implies a very large clique. Notice,
for example, that power-law decays are much steeper for
degree disassortative networks than for assortative ones.

Particularly, denominator in Eq. (2) implicitly assumes
that every two nodes can form a link between themselves.



Type Network Description n m k C D r Te rq d<pr d<pec

netsci Network scientists [57] 1589 2742 3.5 0.638 0.690 0.462 0.442 0.679 1% 1%

Collaboration  condmat ~ Cond. Mat. archive [58] 27519 116181 8.4 0.655 0.722 0.166 0.116 0.291 1% 1%

comsci  Slovenian computer sci. [59] 239 568 4.8 0.479 0.561 —0.044 0.123 0.355 6% 6%

Online social Dpgp PGP web of trust [60] 10680 24316 4.6 0.266 0.317 0.238 0.497 0.632 2% 2%

football American football [8] 115 613 10.7 0.403 0.419 0.162 0.369 0.385 0% 0%

Social jazz Jazz musicians [61] 198 2742 27.7 0.617 0.703 0.020 0.008 0.198 1% 1%

dolphins  Bottlenose dolphins [62] 62 159 5.1 0.259 0.319 —0.044 0.192 0.234 15% 15%

karate  Zachary’s karate club [63] 34 78 4.6 0.571 0.666 —0.476 —0.229 0.277 3% 6%

C . emails  Emails at university [64] 1133 5451 9.6 0.220 0.253 0.078 0.214 0.317 14% 15%

ommunication

enron Emails at Enron [43] 36692 183831 10.0 0.497 0.530 —0.111 0.185 0.379 4% 4%

Road network euro European highways [65] 1039 1305 2.5 0.019 0.025 0.090 0.395 0.499 91% 91%

Power grid power Western US grid [5] 4941 6594 2.7 0.080 0.100 0.003 0.469 0.653 74% 74%

Citation hepart H.-E. Part. archive [66] 27770 352285 25.4 0.312 0.353 —0.030 0.132 0.370 6% 6%

Documentation javadoc Javadoc (javax) [67] 2089 7934 7.6 0.373 0.433 —0.070 0.090 0.440 9% 9%

Protein yeast] Yeast S. cerevisiae [47] 2445 6265 5.1 0.215 0.250 —0.101 0.372 0.534 29% 29%

yeast2 Yeast S. cerevisiae [68] 2114 2203 2.1 0.059 0.072 —0.162 0.576 0.675 68% 68%

javar  Java language (javax) [2] 1595 5287 6.6 0.381 0.440 —0.120 —0.041 0.545 17% 1%

Software Jung JUNG graph library [2] 317 719 4.5 0.366 0.423 —0.190 0.092 0.443 21% 21%

guava Guava core libraries 174 355 4.1 0.320 0.375 —0.218 0.075 0.734 34% 34%

java Java language (java) [2] 1516 10049 13.3 0.685 0.731 —0.283 —0.574 0.536 1% 100%

Web graph blogs Blogs on US politics [69] 1490 16715 22.4 0.263 0.293 —0.221 —0.057 0.308 8% 13%

Metabolic elegans  Nematode C. elegans [70] 453 2025 8.9 0.646 0.710 —0.226 —0.240 0.183 1% 3%

Internet oregon  Aut. systems (oregon) [43] 767 1734 4.5 0.293 0.317 —0.299 —0.231 0.262 35% 70%

Bipartite women  Southern women club [71] 32 89 5.6 0.000 0.000 —0.337 100% 100%
Random Erdos-Rényi graph [50] pr > pr 0
Configuration model [11, 51] Pe > Pe 0

TABLE I. Common statistics for different real-world networks gathered from the literature and random graph models. (Networks
are treated as simple undirected graphs, while module detection algorithms consider multi graphs. Results for random models
are valid in the limit of large n (see text for details). Percentages in last two columns ignore nodes with degree at most one.)

Although, this might be true in, e.g., online social net-
works, where links are generated for 'free’, it indeed does
not hold for other networks, where node degrees are sub-
jected to, e.g., practical or technological constraints. De-
gree constraints thus introduce biases into ¢ that are par-
ticularly apparent in degree disassortative networks.

Alternative definition of clustering that filters out de-
gree biases has been proposed in the form of degree-
corrected node clustering coefficient d [38].

(4)

where w; is the number of all possible links between
neighbors of 7 with respect to their degrees, d; € [0, 1].
(Note that w can be computed from neighbors degree se-
quence using a simple algorithm presented in [38].) For
k; <1, d; = 0 by definition. Again, clustering of the en-
tire network can be estimated by simply averaging over
all the nodes, which is denoted D [38], D € [0, 1].

Since w < (g), obviously, d > cand D > C. The latter

can be clearly observed in Table I. Fig. 2 (middle) also

shows scaling of d with respect to node degree. No char-
acteristic form occurs, whereas d is rather constant across
several scales. Actually, under pseudofractal model intro-
duced in [72], ¢ ~ 1/k implies d ~ 1/log k [38].

Next, Fig. 1 shows d in different real-world networks
in Table I. Interestingly, d looks highly assortative in all
networks, whereas nodes with similar d are localized in
regions that are characteristic within the underlying sys-
tem. Note that although communities of highly clustered
nodes can be clearly observed, remaining structure does
not appear to be captured well by classical models.

Formally, we analyze clustering correlations in these
networks by defining mixing coefficient r4. As in Eq. (1),
we adopt Pearson correlation coefficient to measure mix-
ing of clustering at links’ ends. (Similarly for r..)

L S (4 - D) - D),

= 5
2moy " (5)

Td

where o4 is standard deviation, r4 € [—1,1].
Values of r4 reported in Table I reveal that degree-
corrected clustering d is indeed highly assortative in all
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FIG. 3. (Color online) Communities extracted from different real-world networks overlaid over originals, and networks after
extraction (left-hand and right-hand side, respectively). Although communities span throughout the networks, many of the
links remain unaccounted for. (The number of communities equals 13, 14 and 14, while node symbols are consistent with Fig. 1.)

types of real-world networks. Although obvious to some
extent, the latter cannot be considered an artifact of
chance, since r4 of a respective Erdos-Rényi random
graph is significantly lower [73] (due to no constraints
on links). Moreover, same property is absent from stan-
dard definition of clustering ¢, whereas r, is even negative
in some degree disassortative networks (see above). 74
is also consistently much higher than r., where correla-
tions above 0.5 are note rare. Thus, in contrast to degree
mixing, where |r| < 0.25 in most cases, one can in fact
accurately predict d based on that of the neighbors. This
gives an intuitive explanation of why there exist so many
(local) approaches for community detection [74, 75].

Clustering assortativity or, equivalently, ry > 0 can
thus be regarded as another common property of real-
world networks that distinguishes them from mere ran-
dom world. The latter has not been previously observed
and therefore offers various possibilities for future work.
Actually, as shown in Sec. III, synthetic generation of
networks with r4 > 0, alongside with other common
properties, is not straightforward.

Fig. 2 (bottom) also plots distribution of d in different
degree assortative and disassortative networks. One can
observe a relatively fast transition in the case of assor-
tative networks, as most nodes share similar high value
of d (e.g., football and jazz networks). This is an ex-
pected behavior under community structure model that
characterizes social networks. However, in contrast to the
latter, 30-55% of nodes in disassortative networks have
d close to zero, whereas the distribution is else rather
homogeneous (e.g., yeast! and oregon networks). Thus,
despite some exceptions (e.g., elegans network), structure
of non-social networks goes beyond communities, which
also casts doubts on the structure of social networks.

We further investigate peculiar clustering of non-social
networks. Table I reports fractions of nodes with d lower
than predicted by random models discussed above—
lower than p, and p.. Although nodes with degree at
most one, where d equals zero by definition, are ignored,
many networks still contain a large number of nodes with
d lower than expected by chance. Notice also a subtle dif-
ference between p, and p.. For example, p, for oregon
Internet map is below 0.01, whereas p. = 0.87. Thus,
degree distributions alone can explain for the clustering
observed in, e.g., scale-free networks [20].

Note that existence of nodes with very low clustering is

not particularly surprising by itself (see below). However,
due to high clustering assortativity of real-world net-
works, the latter actually implies entire regions of nodes
with very low clustering. These were mainly neglected
in the past literature, as most authors were focused on
nodes with high clustering, and hence community struc-
ture [74, 76]. Nevertheless, most networks analyzed here
still contain some communities, which we address next.
Zhao et al. [29] have already stressed the importance
of absence of communities from certain (parts of) real-
world networks. They have proposed community extrac-
tion framework that guards against the latter. Commu-
nities are extracted one by one, where each is selected
from a candidate pool according to a quality measure W
(see Eq. (6)). When W drops below the value one can
expect under the same procedure in a corresponding ran-
dom graph, the process terminates [77]. Thus, commu-
nities are extracted only until statistically significant.
Quality of community W is simply a difference between
the links within the community and the links towards the
rest of the network normalized appropriately [29]. Let S
be a community and S¢ its complement (denote s = |S]).

W =s(n—s) (Zies K Xieshi kf) , (6)

52 s(n—s)

where k7 and k; — k7 are internal and external degree of
node i. (kf = |[; N S|, where T; is the set of neighbors
of i.) Factor s(n — s) is an adjustment in the spirit of
ratio cut [74, 78]. Since s(n—s) is maximized at s = n/2,
factor penalizes very small or large communities and thus
produces more balanced cuts (see [29] for details).

Eq. (6) can be rewritten into more convenient form as

kSn
W=> =k (7)

S
€S

Since work in [29] was focused on community structure
alone, each time a community S was extracted, procedure
was applied to its complement S¢. However, only the
links between the nodes in S are accounted for, whereas
those towards the rest of the network—between S and
S¢ —should not be simply disregarded as random noise.
(These links in fact constitute functional modules.)

Framework we adopt here therefore removes only the
links within each extracted community. If a node thus
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correspond to termination criteria proposed in [29].)

becomes isolated, it is also removed. Note that this nat-
urally deals with possibly overlapping communities [47]
and network hierarchical structure [79, 80]. Hence, same
framework might be preferable in different scenarios.

Pool of candidate communities can be generated by
directly optimizing Eq. (6), or by applying some commu-
nity detection algorithm [74, 75]. Due to simplicity, we
adopt the latter. Thus, at each step, candidate pool con-
sists of communities identified by the algorithm proposed
in [81]. Although not the best community detection ap-
proach in the literature [74, 82], it is not limited to only
community links, which is in our case essential.

Fig. 4 shows common statistics during extraction of
communities from different real-world networks (Table I).
Note that, in the case of non-social networks—yeast1,
javar and oregon networks—the number of nodes de-
creases only gradually, whereas the largest connected
components consist of almost all nodes until the network
suddenly dissolves (Fig. 4 (top)). Structure below com-
munities is thus more complex than commonly presumed
and does not consist of merely, e.g., individual links be-
tween communities (see Fig. 3). On the other hand, foot-
ball social network appears to contain only communities.

Fig. 4 also indicates the termination criteria proposed
in [29] for javax and elegans networks. However, one can
observe notable changes in network properties even be-
fore the latter. As dense modules are being extracted
from the network, r and C, obviously, decrease (Sec. I).
Still, r decreases only until pronounced communities are

found, and starts to increase, when the rest of the struc-
ture is bothered. Similarly, one can observe initial in-
crease in 14, indicating better separated structural mod-
ules (see Sec. III), until r4 decreases rather quickly. Due
to absence of communities, the algorithm identifies larger
groups of isolated nodes, and thus the size of the network
also drops suddenly. Any modules beyond communities
are therefore characterized by low clustering, degree dis-
assortativity and clustering assortativity.

Observe also that average distance between the nodes
denoted [ [83]—the number of links in the shortest path—
increases only slightly during extraction of communities.
Hence, structure below communities in fact provides effi-
cient global navigation throughout the network, whereas
communities improve navigation only locally. Thus, [ is
only slightly higher in the network after extraction. Sim-
ilar effect was famously observed by Granovetter [17] as
the strength of weak ties—links below communities—and
the weakness of strong ties—links within communities—
and also by other authors more recently [84, 85].

Fig. 3 shows the networks obtained after applying the
proposed framework. Communities are extracted as long
as the largest connected component consists of more than
99% of the nodes. (Criteria based on, e.g., rq might
be more appropriate for larger networks.) Note that al-
though communities span over large regions of these net-
works, much of the structure remains unexplained.

We here restate the structural-world conjecture given
in Sec. I. Networks can be seen as composed out of two
layers. Below, the structure is characterized by func-
tional modules based on the roles played by the nodes
withing the underlying systems (see Secs. V, VI). As
shown in Sec. III, this can explain observed clustering,
degree disassortativity and efficient global navigation.
Above, networks consist of communities that are over-
laid over functional modules, and coincide with some as-
sortative property of the nodes [18, 19]. Communities
increase the overall clustering and degree assortativity in
the network, and provide for efficient local navigation.

Distinction between layers is merely artificial, adopted
to ease the comprehension. Although this naturally re-
lates the conjecture to the concepts of layered or coupled
networks [86-88]. Also, as already stressed in [30], se-
mantics behind the links of the two layers necessarily dif-
fer. (For incorporation of semantics see, e.g., [89].) Since
assortativity coexists with transitivity [21], a relation
that produces communities cannot generate, e.g., dis-
connected functional modules. Thus, different structural
modules are expected only in heterogeneous networks.
Nevertheless, most networks are heterogeneous [30].

Despite all claims in the paper being investigated thor-
oughly, we still pose the above as a conjecture. The
reason is that low clustering and degree disassortativity
characterizing functional modules are already expected
properties of, e.g., scale-free networks [20, 90]. More pre-
cisely, if a network is reduced to a simple graph, and the
largest degree is at least of order y/n, the network is likely
to be degree disassortative [91] (although only a part can



be accounted for [90]). Moreover, heterogeneous scale-
free networks with maximal entropy are degree disassor-
tative networks [92], whereas disassortativity also results
from high branching or low clustering [93]. On the other
hand, networks are expected to be highly clustered only
in the case of some explicit process that introduces tran-
sitivity [12, 20]. Hence, preferential attachment model [7]
that generates scale-free networks can already interpret
at least degree mixing and clustering below communities.

However, the above explains network dynamics only
at a level of individual nodes, or gives a macroscopic de-
scription of the system. Functional modules, together
with structural-world conjecture, provide a mesoscopic
view. For example, under scale-free model of Barabasi
and Albert [7], nodes preferentially link to hub nodes.
The same effect can be encountered under structural-
worlds, while functional modules give further knowledge
about which hubs are likely to be linked simultaneously.
The conjecture thus extends the scale-free phenomena.
Similarly, small-world model of Watts and Strogatz [5]
demonstrates that introduction of long-range links into
else highly clustered network significantly decreases the
distances between the nodes. Again, functional mod-
ules describe how these links are distributed throughout
the network, while high clustering is a result of overlaid
communities. Structural-world conjecture thus encloses
scale-free and small-world phenomena [5, 7] by explaining
network dynamics through its mesoscopic structures—
functional modules and communities.

Similar characteristics of real-world networks have
most notably been investigated in the case of Inter-
net [91, 94], software systems [2, 30], web graphs [30, 95]
and biological networks [36, 96], while authors have also
considered ensembles of graphs [97, 98] and directed net-
works [95]. Hao and Li [25] have already observed an
apparent dichotomy in degree mixing of biological net-
works, which is very similar to our structural-worlds.
However, their comprehension of the phenomena was lim-
ited to communities. Authors have also analyzed robust-
ness [99] and resilience [100], and dynamical processes in-
cluding spreading [101] and communication flows [102].
Finally, Park and Barabdsi [103] have shown that two
independent parameters are needed to capture network
(dis)assortativity, which nicely coincides with our differ-
entiation between two layers of the structural-world.

III. MODEL

Proposed network model is based on the burning pro-
cess of forest fire (FF) model [22, 43], which we introduce
first. Due to simplicity, the model is presented in the case
of undirected networks [104].

Let p be the burning probability, p € [0,1) (see below).
Initially, network consists of a single node, while for each
new node 7, the burning process proceeds as follows.

(1) i chooses an ambassador node a uniformly at random,
and links to it.

(2) One samples z, from a geometric distribution with

mean %. i selects x, random neighbors of a that

were not yet visited, ji,...,Jz,, and links to them.

(3) One recursively applies step (2) to each ji,...
where the latter are taken as ambassadors of <.

yJxps

(If the number of neighbors in step (2) is smaller than x,,
1 selects as may neighbors as it can.) Since each node
can be visited at most once, the burning process surely
converges. Thus, to generate a network with n nodes,
FF model repeats the above procedure n — 1 times.

The model produces densification and shrinking di-
ameter effects observed in temporal real-world networks,
while the networks also exhibit skewed degree distribu-
tion, short distances between the nodes and community
structure [22, 43]. Hence, the model generates networks
with high clustering and degree assortativity (see Fig. 7).

It also has a natural interpretation in, e.g., citation
networks. Burning process mimics the author of a pa-
per including references into bibliography. Author first
reads a related paper, or selects a paper that triggered
the research, and includes it into bibliography (step (1)).
Author then considers bibliography of the latter, or ad-
ditional resources, for other related papers (step (2)).
Some of thus discovered papers are further considered
and cited, while the author continues similarly as before
(step (3)). Despite the above, FF model fails to repro-
duce the properties observed in citation networks.

Note that described process implicitly assumes that
authors read, or at least consider, all the papers they
cite. However, this is indeed not the case. For example,
seminal work on random graphs conducted by Erdos and
Rényi [50] is perhaps among most widely cited papers
in the network science literature. Although, presumably,
only a small number of authors have actually read the
paper. As the work is widely discussed elsewhere, most
authors have just copied the reference from another pa-
per. On the other hand, authors also do not cite all pa-
pers they read, although directly related to their work.
The latter can be simply due to page limitations or, in
the case of papers that appear at about the same time,
related paper can limit, question or even contradict the
work of the author. Nevertheless, such paper would be
read thoroughly, while, presumably, many of its refer-
ences will be further considered and also cited.

Examples suggest that the papers that authors read
or cite are selected based on two, not necessarily depen-
dent, processes. We thus propose structural forest fire
(SFF) model that adopts the same burning procedure
as FF model to traverse the network, whereas links are
formed according to another independent process.

Let ¢ be the linking probability, ¢ € [0,1) (see below).
Initially, network consists of a single link, while for each
new node %, the model proceeds as follows.

(1) i chooses an ambassador node a uniformly at random.

(2) One samples z, from a geometric distribution with

mean ﬁ. i selects x,, random neighbors of a that
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FIG. 5. (Color online) Networks containing 1000 nodes generated with different network models. FF model generates degree
assortative networks, while those generated with SFF and LFF models show degree disassortativity (r equals 0.167, —0.189 and
—0.124). Clustering C is 0.404, 0.411 and 0.338, while 74 is 0.347, 0.170 and 0.285. (Node symbols are consistent with Fig. 1.)

were not yet visited, ji,...,jz,-
(3) One samples z, from a geometric distribution with
1. i selects z, random neighbors of a that

mean 1—a"
were not yet linked, [y, ...,l; , and links to them.

(4) One recursively applies step (2) to each ji,...
where the latter are taken as ambassadors of 7.

yJxps

(Details are the same as above. [105]) Again, the process
converges, whereas the entire procedure is repeated n — 2
times. Step (3) ensures that no multiple links are formed.
Denote v to be mean number of ambassador nodes vis-
ited within the burning process, and let p < 0.5. Then,

p \'_1-p
< < 8
B3 (%) <=2 0

while the expected degree in the network is

< 2%
<1,

9)

Although valid only in the limit of large n, the bounds
appear rather tight for small enough p and ¢ (see Sec. VI).

Note that, as node does not necessarily link to the
ambassador node, it will fail to form any link—become
isolated—with probability (1 — ¢)¥. Although the latter
is negligible in most cases, this is not the case when one
models very sparse networks that imply smaller p and
q (e.g., power grids). Isolated nodes are else a common
property of real-world networks. However, in practice,
these are often ignored in the analysis, or the network is
even reduced to the largest connected component.

To obtain a connected network with desired number
of nodes, one could simply repeat the burning proce-
dure until the property is reached (for other alternatives
see [22, 106]). However, according to the above interpre-
tation, isolated nodes can be seen as authors who failed
to find any paper that is indeed similar to their own.
The latter can indicate seminal work. In that case, an
author would, presumably, attempt to relate the work
with existing literature as best as possible. As such pro-
cess is better imitated by FF model, for the analysis
here, a node that remains isolated in the final network is
re-incorporated according to the dynamics of FF model

(with same p). This ensures a network with n nodes.
(Note that the above refers to only (1—¢)”(n—2) nodes.)

SFF model can generate networks that exhibit most
properties observed in real-world networks (see Fig. 5).
Clustering assortativity r4 introduced in Sec. II is usu-
ally around 0.2, which nicely coincides with, e.g., elegans
metabolic network that exhibits r; = 0.183. However,
most other networks in Table I have r4 much larger than
that. By observing these networks in Fig. 1 on can re-
alize that most of them show an interesting phenomena.
Communities of highly clustered nodes are localized in
certain regions, although these may be scattered across
the networks (e.g., power, yeast! and javaz networks).
(Localization phenomena appears to relate to some prop-
erty that may vary between the underlying systems.)

We thus also analyze a small variation of the model de-
noted localized forest fire (LFF) model. Due to simplic-
ity, localization in the model is realized by using isolated
nodes. When such node is re-incorporated into the net-
work, the ambassador in step (1) is chosen only between
isolated nodes, and not between all the nodes in the net-
work as originally (omitted for first node). As isolated
nodes are re-introduced using FF model, communities of
highly clustered nodes emerge, while the above variation
forces them to localize in certain regions of the network.

LFF model indeed generates networks with higher clus-

°
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°
2

00001
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FIG. 6. (Color online) Degree distributions of networks con-
taining 5000 and 10000 nodes generated with different net-
work models (left and right, respectively). Scale-free ex-
ponents « for smaller networks generated with SFF and
LFF models are 2.61 and 2.85, while 2.82 and 2.88 for larger
ones. (Power-law py o« k™ is a plausible fit at p-value = 0.1
in all cases [107].) Average degrees range from 8.1 to 8.7, and
thus coincide with density of real-world networks [59, 108].
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FIG. 7. (Color online) Clustering and degree mixing in net-
works containing 1000 nodes generated by varying the param-
eters of different network models. (Results are estimates of
the mean over 100 network realizations.)

tering assortativity, where r4 is around 0.3 in most cases.
Localization can also be clearly observed in Fig. 5, how-
ever, since our intention is merely a statistical analysis of
the localization effect, LFF model is not expected to gen-
erate networks that would visually resemble real-world
networks (like FF and SFF models). Results further indi-
cate that r4 measures the overlap between the nodes with
high and low clustering, or, more precisely, how well are
the communities separated from the rest of the network.
Note also that all models still seriously underestimate r4.

Both SFF and LFF models generate networks that
show scale-free degree distributions (Fig. 6) and small-
world phenomena (results omitted). In Fig. 7 we also
analyze network clustering and degree mixing by varying
the probabilities p and g. p governs clustering in the net-
work for all forest fire models, where clustering increases
monotonically with p. Also, p increases degree assorta-
tivity in the case of FF model, whereas p has little effect
on degree mixing in the case of SFF and LFF models.
However, degree mixing in the models is governed by g,
where degree disassortativity increases with ¢. ¢ also
does not affect the clustering for LFF model.

The above can be summarized as follows. Notice that,
due to a special treatment of isolated nodes, LFF model
is in fact identical to FF model for ¢ = 0 [104]. On the
other hand, the model generates bipartite networks for
p = 0. (Or k-partite networks if the initial network is
a full graph on k nodes.) Hence, for large p and small
q, generated networks experience large clustering, degree
assortativity and clear community structure. While, for
small p and large ¢, networks show lower clustering and
high degree disassortativity. Furthermore, such networks
also contain pronounced functional modules, since multi-
partite networks are the most prominent examples of the
latter. In other words, p and ¢ vary the number of nodes
on each layer of structural-world networks (Sec. II), while

one can thus generate clustering and degree mixing that
resembles almost arbitrary network in Table I [109].

Although not directly discussed above, one can imag-
ine that copying the links of ambassador node—linking
to its neighbors—within the proposed models produces
functional modules. We stress that the key factor here is
that the node does not necessarily link to the ambassador
itself. The latter is also the cause for degree disassorta-
tivity, whereas linking to the ambassador gives degree
assortative networks in any case. Still, degree mixing
coefficient r should not be taken as a measure of how
pronounced the functional modules are, but is rather re-
lated to the difference in the size of the dependent mod-
ules. One can expect larger modules in networks that
show greater degree disassortativity, whereas low cluster-
ing, alongside large average degree, is perhaps the most
prominent indicator of functional modules in a network.

Note that functional modules are an implicit result of
our models, while this is rather different from some other
techniques in the literature. For example, blockmod-
els [110], which were widely studied in social networks
literature in the past, can generate networks with arbi-
trary structural modules. However, one has to specify
how different modules are interlinked between, which is
often hard in practice [30, 111].

Other authors have also proposed models very sim-
ilar to ours [41, 42, 112, 113]. However, these either
do not adopt the burning process to traverse the net-
work [106, 114] or the model necessarily links the nodes
with their ambassadors [23, 24], which results in degree
assortativity. Nevertheless, the main difference in these
models is that the set of the nodes that are linked with
the concerned node is always a subset of the nodes that
are visited. For the models proposed here, these two sets
can intersect arbitrarily, while they can also be disjoint.
The latter in fact produces rich dynamics observed above.

Last, we also note that, although the interpretation
of the models was limited to citation networks, the same
process accurately resembles the dynamics in many other
networks. For example, in the case of software networks,
the process exactly mimics the actions of a developer that
is adding classes of code into unfamiliar project. Simi-
larly, in air transportation networks, an airport might of-
fer the same flights as a nearby airport—and would thus
copy its links—while it will, presumably, not offer a flight
towards the latter. Finally, the same process can also be
undertaken by a person that is being familiarized with
friends of an acquaintance. Although the person does
not become a friend of the acquaintance, he or she may
still befriend with some of the acquaintance’s friends.

IV. ALGORITHM

Despite the discussion in Sec. II, proposed algorithm
directly partitions the network into structural modules
without first extracting communities. The algorithm is
based on a label propagation framework proposed in [30],
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gi = argmax vy Y f;8(93,9) + (1=vg) D > fi/ks3(91,9) (10)

JeT;

which we briefly introduce below. Due to simplicity, the
framework is presented in the case of simple graphs.
Denote I'; to be the set of neighbors of node 7 and let g;
be an unknown module (or group) label. Furthermore, let
G; be the set of nodes sharing label g;. Propagating labels
between the nodes was first introduced for community
detection. Raghavan et al. [44] have proposed a simple
algorithm that exploits the following procedure. Initially,
each node is labeled with a unique label, g; = 7. Then, at
each iteration, a node adopts the label shared by most of
its neighbors (updates occur in a random order). Hence,

g = argmax Y _ 4(g;.9), (11)
Jer;

where ¢ is the Kronecker delta (ties are broken uniformly
at random [115]). Due to many links within communi-
ties, relative to the number of links towards the rest of the
network, nodes in communities form a consensus on some
label after a few iterations. Thus, when an equilibrium
is reached, {G} contains communities that are clearly de-
picted in the network structure. Note that Eq. (11) is
actually equivalent to a simple kinetic Potts model [116].

Due to extremely fast structural inference of label
propagation, the algorithm exhibits near linear complex-
ity O(m!2), while the expected number of iterations on
a network with a billion links is only 113 [117].

The basic algorithm can be further improved by also
applying node preferences [118]. Preferences adjust the
strength of propagation from certain nodes (e.g., hubs),
and thus force the propagation process towards more de-
sirable partitions. Let f; be a preference of node 7. Then,

gi = argm;xx Z fi-0(95,9) (12)
Jer;

Note that preferences can be set to an arbitrary node
property (e.g., degree). We adopt the same preferences f
and f (see Eq. (10)) as in [30], whereas detailed descrip-
tion is omitted here (due to space limitations). However,
f, f are in fact composed out of two factors. First factor
corresponds to balanced propagation [65] that, at each
iteration, decreases the propagation strength from the
nodes that are considered first, and increases the strength
from the nodes that are considered last. This counteracts
for the randomness introduced through random update
orders, which stabilizes the propagation process [119].

Second factor corresponds to defensive propaga-
tion [117] that further increases the propagation strength
from the core of each G or, equivalently, decreases the
strength from its border. The latter forces the algorithm
to gradually reveal the network structure and improves
its detection strength in real-world networks [67, 117].

JET; LET \T;

The algorithm in Eq. (12) is comparable to current
state-of-the-art in community detection, while Subelj and
Bajec [30] have extended the same principle to also func-
tional modules. Rather than propagating the labels be-
tween the neighboring nodes, one propagates the labels
between the nodes at distance two—through common
neighbors. Since nodes in functional modules share many
common neighbors,; similarly as before, they form a con-
sensus on some particular label. Thus, when the pro-
cess unfolds, {G} contains most pronounced functional
modules in the network. Generalization is identical to a
standard propagation on a network with the same set of
nodes, while the links represent (link-disjoint) paths of
length two between the nodes in the original network.

The algorithm for functional modules is shown in the
right-hand side of Eq. (10). f; is preference of node 4
(see above), whereas k; is a normalization. Since the
sum in Eq. (12) has k; terms, whereas the sums in the
right-hand side of Eq. (10) contain up to } ;. k; terms,
this introduces biases in the detection of modules. Divid-
ing each term by k; aggregates the contributions at each
neighbor of ¢, which makes all sums proportional to k;.

Eq. (10) shows complete algorithm for detection of ar-
bitrary structural modules denoted generalized propaga-
tion [30]. Left-hand side is the same as Eq. (12), while
v4 are module dependent factors that represent adopted
network modeling, v, € [0,1]. Setting v, =1 for all g is
identical to community detection algorithm in Eq. (12),
whereas, for all v, equal to zero, the algorithm reveals
only functional modules. When v, = 0.5, identified mod-
ules depend on community and functional links.

General propagation framework in Eq. (10) can de-
tect communities and functional modules even when only
weakly depicted in the structure of the network [30, 120].
However, module factors v, have to be defined accord-
ingly (see App. B). Note that v, are set apriori, when
one initializes node labels {g}. As most labels disappear
during propagation, one only has to provide sufficient
number of labels with vy ~ 1 in regions of the network,
where communities could exist, and enough labels with
vy ~ 0 in regions, where one expects functional modules.

Network modeling proposed in [30] was based on con-
ductance [121], while the algorithm in [120] uses clus-
tering coefficients ¢ and C [5]. Due to the analysis
in Sec. II, we propose a much simpler model based on
degree-corrected clustering coefficients d and D [38].

1 for D>rAd>T1 (13a)
vg=14 0 for D<tAd<T (13b)
0.5  otherwise (13¢)

Parameter 7 is expected clustering in a corresponding



random graph, where Erdés-Rényi [50] graph with clus-
tering p, and configuration model [11, 51] with p. are the
most obvious choices (Sec. IT). For the analysis here, we
set T to p, to reveal modules that go beyond (scale-free)
degree distributions (if not stated otherwise).

Eq. (13) should be seen as follows. Since most real-
world networks have D > 7, the algorithm identifies
communities in regions with high clustering (Eq. (13a)).
Eq. (13b) properly models, e.g., bipartite networks,
where functional modules are revealed in regions with
very low clustering. Otherwise, v, = 0.5 (Eq. (13c)).

Note that, according to structural-world conjecture,
functional modules also emerge below communities, in
regions with high clustering. The model in Eq. (13)
thus apparently ignores most functional modules in the
network. However, different modules commonly become
obscure in the presence of communities. Let a network
contain a complete k-partite subgraph on n nodes. Ob-
viously, the network contains clear functional modules.
Still, when k goes to n, the corresponding subgraph actu-
ally becomes a clique, and thus a well defined community.
Similar effect occurs, when the size of subgraph decreases
or, equivalently, n goes to k. Hence, functional modules
often cannot be revealed alongside communities.

The above is directly related to the following question.
Assume that networks truly contain functional modules
as structural-world predicts; how that there exist numer-
ous studies in the literature, where authors have identi-
fied communities in almost any type of real-world net-
works? Analysis in Sec. V shows that community detec-
tion algorithms commonly identify dependent functional
modules as a single group of nodes. Nonetheless, the lat-
ter can still be a well defined community. Actually, some
of the communities in the famous football social network
(Table I) are in fact multi-partite graphs (see Fig. 9).

Although this indicates a rather undesirable behavior
of community detection algorithms, it can be employed
for detection of other modules. The model in Eq. (13)
thus first tries to identify dependent functional modules
as communities, which are then (possibly) refined into
functional modules. Let {G} be the initial partition re-
vealed by the algorithm. For each G, the algorithm is
further applied to a subnetwork induced by the nodes
in G. As this refinements proceed recursively, an entire
sub-hierarchy of modules is obtained. Similarly, one can
reveal a super-hierarchy by applying the algorithm to
a super-network induced by {G} (agglomeration). Here
(super-)nodes represent modules that are linked, when a
link between their nodes also exists in the network. Final
result of such divisions and agglomerations is a complete
hierarchy of modules denoted # [79, 80] (see Fig. 9).

Leafs of ‘H represent nodes in the network, while inner
nodes {Z} correspond to modules {G} that were obtained
over several applications of the algorithm. Let Z corre-
spond to module G and let Zy,...,7Z; be the ancestors of
TZ. Furthermore, let Hz be a sub-hierarchy rooted at Z.
Thus, leafs of H7 are nodes in module G, while Gy, ..., G;
is a partition of the subnetwork induced by G. Let each
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inner node Z (or module G) also be associated with value
6, 6 € [0, 1], which is defined as the probability that two
nodes in G; and G; are linked, ¢ # j. Let there be m such
links in G and denote s to be the number of all possible
links, s = >, ;1Gil|G;]- Then, 6 =m/s. (If ancestors of
7 are leafs of H, 6 is just the density of module G.)

Probabilities 6 are in fact maximum likelihood estima-
tors for hierarchy # [122], while the posterior probability
of H—likelihood L given the network observed—is

L) =[] (6™ (1 —60)" " (14)

TeH

Analysis in Sec. V reports log-likelihoods — log £, where
smaller values are better. Note that log L of {G} is the
entropy of the corresponding blockmodel [123].

When a network contains only communities, initial
partition {G} would commonly already identify them.
Thus, {G} should not be further refined, which requires
an extra criteria. A promising approach is to refine only
very sparse modules G that clearly do not coincide with
the definition of a community, e.g., when a subnetwork
induced by G have D < 7 (results omitted). For the
analysis here, G is refined when |G| > 3, while only re-
finements with £(Hz) > L£(G) are accepted—Hz is the
revealed hierarchy for G, and £(G) is the likelihood of a
hierarchy with a single (inner) node and leafs from G.

Proposed algorithm thus constructs an entire hierar-
chy of modules H and is denoted hierarchical propaga-
tion (HP) algorithm. When only a partition of the net-
work is required, modules represented by the bottom-
most (inner) nodes in H are reported (no agglomerations
are needed). We also consider an algorithm without mod-
ule refinements, which is, for consistency with [30], de-
noted generalized propagation (GP) algorithm.

Complexity of HP algorithm is near ideal. Each prop-
agation of labels (Eq. (10)) requires O(km), where m is
the number of links and k the average degree. The num-
ber of iterations required for the propagation process to
converge can be, according to [117] and above analogy,
estimated to O((km)%?). Since the number of module
refinements is usually negligible, the total complexity be-
comes O((km)'?). When an entire hierarchy is required,
the latter refers to a single level. (For the analysis here,
we limit the maximum number of iterations to 100.)

HP algorithm is first validated on synthetic benchmark
networks, and applied to different real-world networks
(Sec. V). Next, the algorithm is adopted for the analysis
of a citation network (Sec. VI), where communities have
been extracted apriori. Comparison with 12 state-of-the-
art algorithms is conducted in App. A, while App. B also
analyses different network models (Eq. (13)).

V. STRUCTURAL MODULES

Results in the following (and in Apps. A, B) are re-
ported in terms of log £ (Eq. (14)), normalized mutual
information [124] (NMI) and adjusted rand index [125]
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FIG. 8. (Color online) Comparison of module detection algorithms on GN2, HN7 and HN6 synthetic networks (left to right,
respectively). (Results are estimates of the mean over 100 network realizations, while bars show standard error of the mean.)

(ARI). NMI equals to the mutual information of the
true network partition, and partition of modules revealed
by the algorithm, that is normalized by their entropies,
NMI € [0,1]. ARI measures the fraction of node pairs
that are classified the same in both partitions, subjected
to the expected value in a null model, ARI € [0, 1]. For
both measures, identical partitions experience 1, while
the expected value for independent partitions is zero.

Proposed HP algorithm is compared against a varia-
tion without module refinements denoted GP algorithm
(Sec. IV), and a variation limited to merely communities
denoted CP algorithm (see App. B). We also consider
two other approaches. First is a community detection al-
gorithm known as Louvain method [126] that optimizes
modularity [127] by multi-level aggregation (LUV algo-
rithm). Second is a (general) structural module detection
algorithm, which fits a predefined mixture model using
expectation-maximization [128] technique [31] (MM algo-
rithm). Among 13 state-of-the-art algorithms in App. A,
both represent the second best approach in their category
(after that in [129] and HP algorithm).

MM algorithm demands the number of modules to
be known beforehand, which is set to the true value in
all cases. (Due to different stopping criteria, results for
MM algorithm are slightly better than in [30, 120].)

A. Synthetic networks

Algorithms are first applied to three synthetic bench-
mark networks with planted partitions of structural mod-
ules. All partitions consist of communities and functional
modules, while the structure is controlled by a mixing pa-
rameter p, 4 € [0,1]. When p equals zero, all links in the
network are placed according to the predefined partition,
whereas the structure degenerates with increasing pu.

Fig. 8 (left) plots the results for GN2 synthetic net-
works [36] that are a generalization of a classical commu-
nity detection benchmark [8]. Networks consist of four
modules with 32 nodes, where two modules are classical
communities, while the other two form a bipartite struc-
ture of functional modules. Average degree is fixed to 16.

Only HP algorithm can accurately reveal the planted
structure in these networks. Observe that performance of
a community detection algorithm (e.g., LUV algorithm)
is only slightly worse compared to a general module de-

tection algorithm (e.g., MM algorithm). The former
identifies functional modules in the network as a single
group of nodes, however, this is only weakly expressed
by standard measures used in the literature [74, 124]. As
already discussed in Sec. IV, HP algorithm first reveals
communities in these networks, which are then refined
into functional modules (see GP algorithm).

Next, algorithms are applied to two synthetic networks
that are based on a hierarchical model [79, 80] (Sec. IV).
Respective hierarchies are shown in Fig. 8, where shades
of nodes correspond to values of 6 that are set to either
porl—p. For p=0,60 € {0,1}. Leafs of hierarchies
represent actual planted modules with 8, 16 or 24 nodes.
Networks thus contain 7 and 6 modules, and are denoted
HNT7 and HN6 networks. Note that both networks consist
of three communities, whereas functional modules form
two bipartite structures in the case of HN7 networks, and
a tripartite structure in the case of HN6 networks.

Results for HN7 networks are shown in Fig. 8 (mid-
dle), while Fig. 8 (right) plots results for HN6 networks.
Again, only HP algorithm can accurately detect the true
structure planted into these networks, while the perfor-
mance of other algorithms is else similar as above.

HP and GP algorithms are further applied to Erdds-
Rényi [50] random graphs and Barabdsi-Albert [7] scale-
free networks that, presumably, contain no structural
modules. Number of nodes is fixed to 128 in both cases,
while average degree is varied from 2 to 32. When degree
exceeds a certain threshold, none of the algorithms reveal
any structure in these networks. The transition occurs
between 8 and 16. The algorithms also do not suffer from
the resolution limit problem [130] (results omitted).

We conclude that HP algorithm can detect arbi-
trary structural modules—communities or functional
modules—when they are present in the network. Also,
comparative analysis in App. A shows that the algorithm
outperforms all state-of-the-art approaches considered.
As the number of modules is an implicit result of the
propagation process employed, the value does not have
to be set apriori as for most other algorithms [31, 111].
Hence, proposed algorithm represents a promising ap-
proach for exploratory analysis of real-world networks.

Next, we adopt HP algorithm for the analysis of real-

world networks, with special emphasis on the context of
different modules within the underlying systems.



B. Real-world networks

We first compare the algorithms on four real-world
networks from Table I. We adopt three classical social
networks—football, karate and women networks—with
known sociological classification of the nodes that results
from earlier studies [8, 63, 71]. For football and karate
networks, corresponding network modules are communi-
ties that coincide with some assortative property of the
nodes, whereas, in the case of women network, the par-
tition corresponds to functional modules that represent
different roles nodes play within the underlying domain—
women and events attended by the former. We also adopt
jung software network, where nodes represent classes of
code that constitute JUNG library [131]. Here software
packages decided by the developers are taken as the true
network partition. Respective structural modules are
thus communities of classes implementing common func-
tionality, and functional modules representing the roles
of classes within JUNG project [2, 30] (see below).

The results are shown in Table II. Proposed HP al-
gorithm most accurately reveals the true partition in all
cases except for karate network. More precisely, the algo-
rithm identifies three communities (on average), while so-
ciological partitioning contains two. Nevertheless, parti-
tion with three communities is somewhat more consistent
with the structure of the network, and thus commonly re-
ported by the algorithms in the literature [132, 133].

NMI ARI
Network
LUv MM CP HP LUV MM CP HP
football 0.876 0.823 0.905 0.909 0.771 0.683 0.841 0.850
karate 0.629 0.912 0.834 0.866 0.510 0.912 0.823 0.861
jung  0.605 0.662 0.650 0.684 0.269 0.276 0.218 0.280
women 0.309 0.825 0.217 0.932 0.174 0.716 0.119 0.936

TABLE II. Comparison of module detection algorithms on
different real-world networks with known partitioning. (Re-
sults are estimates of the mean over 100 runs.)

Although structural modules in, e.g., football and
women networks are fundamentally different in many
basic module properties, HP algorithm accurately de-
tects the structure that is present in each network. We
thus also apply the algorithm to a larger number of real-
world networks, to analyze, whether general modules—
communities and functional modules—better model the
network structure than communities alone. For a fair
analysis, we compare modules revealed under the same
framework, exemplified by HP and CP algorithms. (For
comparison, we also report results for other approaches.)

Table IIT shows log £ of hierarchies of modules identi-
fied with different algorithms (as described in Sec. IV).
We consider 16 real-world networks from Table I that are
reduced to the largest connected components. Observe
that general modules better predict the structure present
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Network —logL
Groups LUV MM CP HP
netsci 2622.3 2024.7  2152.0
comsci 2399.7 2011.0 3326.5
football 12 1184.3 1138.5 1351.7 1096.0 1095.2
karate 2 196.3  178.0 195.8 188.2 186.9
emails 25903.6 24287.7 24402.8
euro 5954.1 4202.1 4072.3
power 33874.6 21132.9 20678.8
javadoc 22 23011.5 19943.4 25361.7 19405.7 19346.0
yeast1 32621.3 28280.9 28689.4
yeast? 15766.8 12826.9 12181.3
javaxr 21 16140.7 13728.9 17299.2 13497.5 13063.5
jung 38 3081.6 2583.8 2997.5 24974 2489.6
guava 4 1418.1 1020.4 1295.8 1012.1 991.3
elegans 8673.5 8955.7 8856.9
oregon 9351.5 9865.6 10456.6
women 3 193.3 204.2 163.6 207.4 183.8

TABLE III. Analysis of hierarchical structures revealed with
module detection algorithms in different real-world networks.
(Results are estimates of the mean over at least 100 runs,
while ’groups’ corresponds to a known partitioning.)

in most types of real-world networks including informa-
tion (e.g., javadoc network), biological (e.g., yeast2 and
elegans networks), technological (e.g., power and jung
networks) and, surprisingly, also classical social networks
(e.g., football and karate networks). On the other hand,
collaboration networks appear to be the most promi-
nent examples of networks with only community struc-
ture (e.g., netsci and comsci networks).

Note that, e.g., karate and elegans networks are in fact
best modeled by considering merely network modularity
(see LUV algorithm). However, the latter is actually due
to increased complexity, when one considers hierarchies

—log £ and no. levels

Network
Runs CP HP—p, and p. [80]

ootba . . . .
football 10* 1010.9 3 954.8 5 1004.1 3 884.2 11
karate 10° 1741 3 1723 3 173.9 2 73.3 10
euro  10° 4108.9 6 3883.2 8 39244 5

yeast? 102 12495.0 6 11611.2 7 11596.4 4

javaz 102 13020.7 4 12894.1 4 11512.2 3

jung  10° 23545 5 2312.5 4 22729 4

elegans 10° 8734.1 5 8640.9 6 8243.3 5

women 10* 1939 2 1636 1 1636 1

TABLE IV. Analysis of hierarchical structures revealed with
module detection algorithms in different real-world networks.
(Results are peak values estimated over at least 100 runs,
while last column corresponds to (binary) hierarchies in [80].)
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FIG. 9. (Color online) Hierarchies of football social network revealed with CP and HP algorithms (left-hand and right-hand
side, respectively). (Node symbols represent NCAA college (American) football conferences and are consistent among figures.
Values in inner nodes of hierarchies equal 6, whereas solid and dashed links correspond to agglomeration and division steps.)

of general structural modules. For example, assume that
the algorithm reveals several functional modules at some
level of the hierarchy. In order to adequately model the
structure present, dependent functional modules must
necessarily be detected as a single group on the next level.

Table IV thus also shows log £ for the best hierarchies
revealed in 8 real-world networks from Table III. Despite
the discussion above, HP algorithm still most accurately
predicts the hierarchical structures in these networks.
Results also reveal that p.—expected clustering in a con-
figuration model [11, 51]—more adequately distinguishes
between different types of modules than p,—clustering of
an Erdos-Rényi random graph [50] (see Eq. (13)). Never-
theless, since p. is merely an upper bound for C' [52], p,.
proves to be more appropriate for smaller or very sparse
networks (e.g., karate and euro networks).

Table IV further shows the number of (non-trivial) lev-
els that constitute each hierarchy—height of the hierar-
chy. Observe that hierarchies of communities generally
consist of much larger number of levels than those that
include also other structural modules. Since the com-
plexity of the hierarchy increases exponentially with its
height, the difference is substantial. Table IV also reports
binary hierarchies from [80] that were reveled by Monte
Carlo sampling scheme. Although values of log £ are bet-
ter than those obtained with, e.g., HP algorithm, heights
of respective hierarchies are again considerably larger.

We conclude that general structural modules more ade-
quately model the mesoscopic structure of networks than
communities alone. Next, we consider modules identified
in different types of real-world networks in greater detail.

Fig. 9 shows hierarchies of football social network re-
vealed with CP and HP algorithms. Nodes in the net-
work represent college (American) football teams that
are linked, when a game was played during the NCAA
2000 season. Known partitioning of the network cor-
responds to a division into conferences. Observe that
both hierarchies identify conferences at some intermedi-
ate level, whereas many are further partitioned into dif-
ferent structural modules. More precisely, although some
conferences correspond to a clique in the network, others

are in fact multi-partite structures (see Fig. 9 (right)).
The latter can be directly related to the schedule of the
games played, and thus the role of different teams dur-
ing the 2000 season. Hence, despite the fact that the
network represents a classical benchmark for community
detection, hierarchy of merely communities fails to iden-
tify most of the structure present (see Fig. 9 (left)).

Fig. 11 (right) also shows hierarchy of jung software
network (see above) revealed with HP algorithm. Mod-
ules again coincide with the known classification of the
nodes—packages of software classes—whereas different
modules show characteristic features of JUNG project.
For example, classes implementing the same functional-
ity (e.g., graph implementations) commonly correspond
to a community in the network, while classes with the
same role within the project (e.g., parsers or plug-ins),
which depend on a common set of other classes, are usu-
ally expressed as functional modules. Again, much of the
functionality of JUNG library would remain obscure un-
der the framework limited to communities (see also [30]).

Last, Fig. 10 shows structural modules in javaz soft-
ware and elegans metabolic networks revealed with
CP and HP algorithms. Observe that most prominent
functional modules in javar network are revealed in
regions with lower clustering—indicated by strong off-
diagonal structure—while communities mostly exist in
regions with higher clustering. However, the latter is not

FIG. 10. (Color online) Structural modules—blockmodels—
of javaxr software and elegans metabolic networks revealed
with CP and HP algorithms (left-hand and right-hand side,
respectively). (Dots represent links, whereas shades corre-

spond to average d at link ends and range between 0 (mocha)
and 1 (blue). Dots are enlarged five times for better visibility.)
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FIG. 11. (Color online) (left) Structural modules—blockmodels—of jung software network revealed with CP and HP algorithms
(left-hand and right-hand side, respectively). (Symbols are consistent with Fig. 10.) (right) Hierarchy of jung software network
revealed with HP algorithm. (Node symbols represent high-level packages of JUNG library [131]—jung.visualization (circles),
jung.io (triangles), jung.graph (squares) and jung.algorithms (diamonds)—while hierarchy is else consistent with Fig. 9.)

the case for elegans network, where all nodes exhibit very
high clustering. Note that both structures revealed with
HP algorithm are still consistent with the structural-
world conjecture, although different types of modules are
better separated in the case javaz network (Sec. IT). This
is further indicated by higher clustering assortativity rg,
which equals 0.545 for javaxr network, while only 0.183
for elegans network. Nevertheless, structure of elegans
network might be modeled more adequately, when com-
munities are extracted from the network apriori.

VI. CORA CITATION NETWORK

In the following we conduct a more detailed analysis of
a larger information network using techniques presented
in the paper. We adopt a citation network extracted from
the famous Cora dataset [45] that includes computer sci-
ence publications collected from the web, and publica-
tions automatically parsed from the bibliographies of the
latter. Complete network reduced to the largest con-
nected component contains 23166 nodes and 89157 links,
while other common statistics are given in Table V.

Description n m k C r rd

Cora network 23166 89157 7.7 0.266 —0.055 0.394
Community extraction 14602 29003 4.0 0.143 —0.083 0.547
6832 10345 3.0 0.073 —0.143 0.489

Functional modules

TABLE V. Common statistics for Cora citation network be-
fore and after community extraction, and network induced
by functional modules identified in the latter. (Networks are
treated as simple undirected graphs.)

We first employ SFF and LFF network models intro-
duced in Sec. III to analyze citation dynamics depicted
in the network. Table VI shows the networks generated
by varying the burning and linking probabilities p and
q within the models. Observe that, for p ~ 0.3 and
p =~ 0.75, both models match common statistics of Cora
network almost precisely. However, as already discussed
in Sec. III, clustering assortativity r4 is underestimated.

Model p q n m k C r rd
0.275 0.75 79886 6.9 0.263 —0.060 0.213

0.725 78724 6.8 0.270 —0.056 0.217
SFF 03 (.75 23166 gr547 7.6 0.269 —0.057 0.192

0.775 97485 8.4 0.265 —0.057 0.179
0.325 0.75 96729 8.4 0.272 —0.049 0.179
0.25 0.775 82057 7.1 0.265 —0.059 0.277

79581 6.9 0.275 —0.051 0.285
88870 7.7 0.272 —0.053 0.273

0.8 100820 8.7 0.266 —0.054 0.270
0.3 0.775 97222 8.4 0.277 —0.049 0.274

0.75
LFEF ¢.275 0.775 23166

TABLE VI. Statistics for networks containing 23166 nodes
generated with SFF and LFF network models. (Results are
estimates of the mean over 10 realizations of network models.)

According to Eq. (8), the number of visited nodes v by
each newly added node within the models—the number
of publications considered by the authors—can be esti-
mated between 1.61 and 1.75 (simulations give similar re-
sults). As the average number of publications within each
bibliography equals k/2 = 3.84, the fraction of publica-
tions considered by the authors, relative to the number
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FIG. 12. (Color online) Communities and functional modules within Cora citation network (left-hand and right-hand side,

respectively).

(Filled symbols correspond to extracted communities and identified functional modules, where highlighted

modules contain more than 48 nodes. Horizontal line in the right-most plot represents average M for functional modules.)

of publications cited, is 2v/k ~ 0.45. Hence, according to
citation dynamics behind Cora network, more than two
times as many publications are cited than actually read.

Note that above results are somewhat influenced by
(automatic) network sampling procedure (see [45] for de-
tails). The latter can be clearly observed in much lower
average degree k than in other citation networks (see,
e.g., hepart network in Table I). Furthermore, com-
mon density of real-world networks also estimates a much
higher k£ [59, 108]. It ought to be mentioned that scale-
free exponents « for degree distributions of the networks
generated with SFF and LFF models are 2.78 and 2.67,
whereas Cora network exhibits @ = 3.3. (Power-laws
pr < k~% are plausible fits at p-value = 0.01 [107].)

We next also reveal different structural modules ex-
pressed in the structure of Cora network. Identification
proceeds as follows. First, dense structural modules are
identified in the network based on the extraction frame-
work presented in Sec. II. The final pool consists of 146
modules, whereas 61 of these are extracted as communi-
ties according to a criteria based on a local maximum of
rq. Remaining network contains 14602 nodes, while other
common statistics are given in Table V. Fig. 12 (left) fur-
ther shows different properties of identified modules.

Second, remaining structural modules in the network
are revealed using the proposed HP algorithm. The
algorithm detects 1819 groups of nodes, where 827 of
these are identified as functional modules according
to Fig. 12 (middle). Common statistics for the network
induced by functional modules are given in Table V.

As predicted by the structural-world conjecture, iden-
tified communities and functional modules overlap con-
siderably. 43% of nodes in communities also appear in
functional modules, whereas 41% of nodes in functional
modules are overlaid by communities. Each node is else
in 1.25 communities. Fig. 12 also shows distributions of
module sizes s (note different scales). Observe that distri-
bution for communities is rather uniform (Fig. 12 (left)),
which is inconsistent with some earlier work [46, 47].
On the other hand, size distribution of functional mod-
ules shows a plausible fit to a power-law p; < s~% with
a = 2.24 at p-value = 0.1 [107] (Fig. 12 (middle)).

Fig. 12 (right) plots the complexity M for structural
modules identified in Cora network after extraction of
communities. M measures the complexity of linking be-

tween different structural modules. Let p,; be the proba-
bility that a neighbor of a node in some module is in mod-
ule G and let G to be the corresponding random variable.
Then, M of concerned module is defined as

M =A@, (15)
where H(G) is the entropy of G, H(G) = —3_ pglogpy,
and b is the base of the logarithm, M > 1. Note that
Eq. (15) is equivalent to Shannon’s coding theorem [134]
(up to a constant). M of a module is thus the expected
number of dependent modules in the network. Hence,
M is close to one for communities and, e.g., functional
modules that form bipartite structures, whereas higher
values correspond to more complex configurations.
Values of M shown in Fig. 12 (right) reveal than com-
plexity of linking patterns between different modules is
much higher than expected. For example, average M for
functional modules equals 6.85, however, the result is in-
fluenced by a large number of smaller modules identified
in the network (many small communities remain). In-
deed, when the structure is reduced to 31 modules that
represent more than 48 nodes in the original network,
and only inter-dependencies that are supported by more
than 48 links are considered, average M decreases to 1.84.
Nevertheless, functional modules still arrange in configu-
rations that go beyond, e.g., simple bipartite structures.
Although not directly discussed above, general struc-
tural modules more accurately model Cora network af-
ter extraction than a framework limited to communities.
For example, average height of a hierarchy revealed with
HP algorithm equals 4.7, whereas 7.0 for CP commu-
nity detection algorithm (Sec. V). Fig. 13 also shows
corresponding module overlays. Observe that func-
tional modules recognize artificial intelligence and oper-
ating systems as two rather independent fields of com-
puter science, which are related through interdisciplinary
fields like data structures, algorithms and programming
(Fig. 13 (middle)). However, community structure of the
network fails to acknowledge the latter (Fig. 13 (left)).
Last, Table VII also shows research topic distribu-
tions [45] and publications representing hub nodes for
selected functional modules in Fig. 13. Similarly as
in Sec. V, the structure can be related to different
roles of publications within a certain field. For exam-
ple, largest functional modules represent publications ad-
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FIG. 13. (Color online) Largest connected components of community and functional module overlays upon Cora citation
network after extraction (left-hand and right-hand side, respectively). Modules in the right-most overlay correspond to more
than 48 nodes. (Node sizes are proportional to module sizes, whereas histograms represent high-level research topic classification
in [45]—artificial intelligence (blue), operating systems (mocha), data structures and algorithms (asparagus), programming
(gray) and other—and are consistent among figures. Due to simplicity, modules representing four nodes or less are ignored.)

Modules s k (n) Reference / Topic
20 136 Hertz et al., Introduction to the theory of neural computation (Addison-Wesley, 1991).
f:tlxl;oaiks (73) Artificial intelligence — machine learning — neural networks.
129 (11) Artificial intelligence — machine learning — probabilistic methods.
(6) Artificial intelligence — machine learning — genetic algorithms.
37 182 Goldberg, Genetic algorithms in search, optimization and machine learning (Addison-Wesley, 1989).
S{g;iittlﬁms (90) Artificial intelligence — machine learning — genetic algorithms.
175 (15) Artificial intelligence — machine learning — neural networks.
(12) Artificial intelligence — games and search.
18 Kant, Drawing planar graphs using the Imc-ordering, in Proc. of SFCS ’92, pp. 101-110.
9 18 Schnyder, Embedding planar graphs on the grid, in Proc. of SODA 90, pp. 138-148.
Srraavlsji}llig 7 Kant et al., Area requirement of visibility representations of trees, in Proc. of CCCG 93, pp. 333-356.
11 Chrobak et al., Convex drawings of graphs in two and three dim., in Proc. of SCG 96, pp. 319-328.
23 9 Garg et al., Planar upward tree drawings with optimal area, Int. J. Comput. Geom. Ap., 6, 333 (1996).

8 Garg, Where to draw the line, PhD thesis, Brown University (1996).

TABLE VII. Research topic classification [45] and publications corresponding to hub nodes within selected functional modules
in Fig. 13. Neural networks and genetic algorithms modules represent equally labeled bipartite structures, whereas graph
drawing corresponds to lower-most pronounced bipartition (right-hand and left-hand side of Fig. 13 (right), respectively).
Results show hub nodes within smaller modules and topic distribution of larger modules (below and above, respectively), while
only high degree nodes are reported for graph drawing. Note that highest degrees in the larger neural networks and genetic
algorithms modules are else only 19 and 26. Also, interestingly, Roberto Tammasia who was also a PhD advisor of Ashim Garg

has coauthored all papers on graph drawing with multiple authors. (References have been abbreviated to fit page width.)

dressing similar problems that depend on a smaller set of
prior seminal publications or, e.g., book reviews. The lat-
ter commonly correspond to hubs in the network. Never-
theless, many of the revealed configurations of functional
modules include no hub nodes. (See caption of Fig. 13.)

VII. CONCLUSIONS

Findings in the paper expose functional modules as
another key ingredient of complex real-world networks.
These are together with communities combined into a
structural-world conjecture, which provides a mesoscopic
view on the structure of networks. We propose a natural

model based on the latter that generates networks with
most common properties, whereas we also introduce a
simple algorithm that outperforms state-of-the-art in de-
tection of structural modules. We further propose several
other techniques, valid for exploratory network analysis.
Future work will focus on the analysis of larger net-
works with millions of nodes and links, to devise a more
detailed classification of structural-world networks.
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FIG. 14. (Color online) Comparison of module detection algorithms on GN and LFR synthetic networks with smaller and larger
communities (top left to right, respectively), and on GN2, HN7 and HN6 synthetic networks (bottom left to right, respectively).
(Results are estimates of the mean over 100 network realizations, and 10 realizations for MCL and CM algorithms.)

Appendix A: State-of-the-art

Proposed HP algorithm is compared against different
state-of-the-art algorithms for community detection, and
for detection of structural modules. We adopt the fol-
lowing community detection approaches: greedy opti-
mization of modularity [46, 135] (GM algorithm), multi-
stage optimization of modularity [126] (LUV algorithm),
sequential clique percolation method [136] (SCP algo-
rithm), Markov clustering algorithm [137] (MCL algo-
rithm), structural compression method known as Info-
mod [81] (IMD algorithm), random walk based compres-
sion known as Infomap [129] (IMP algorithm), and a label
propagation algorithm [44] (LP algorithm). (SCP algo-
rithm returns overlapping communities; thus, each node
in multiple communities is classified into a random one.)

The algorithms are analyzed on three synthetic bench-
mark networks with planted communities. First is a clas-
sical community detection benchmark [8], where the net-
works consist of four communities with 32 nodes (GN net-
works). We also consider two variations of more realistic
synthetic networks with scale-free degree and community
size distributions [138] (LFR networks). The number of
nodes in the networks is set to 1000, while community
sizes vary between 10 and 50, and 20 and 100 nodes. For
all networks, the structure is controlled by a mixing pa-
rameter p, 1 € [0,1]. When g equals zero, all links are
placed according to the predefined partition, whereas for
w1 equal to one, the networks are completely random.

The results are shown in Fig. 14 (top). HP algorithm
is proven to be at least comparable to most of the ap-
proaches considered, yet it is outperformed by LUV and
IMP algorithms. Note that the latter are among the best
community detection algorithms in the literature, while
their performance on these networks cannot be further
improved [74, 82]. On the other hand, there is also no
guaranty that the construction of networks does not im-

plicitly introduce functional modules (that are detected
by HP algorithm). Nonetheless, both LUV and IMP al-
gorithms are still limited to communities and cannot de-
tect other structural modules, which we address next.

We adopt the following general module detection
algorithms: symmetric nonnegative matrix factoriza-
tion [139] (NF algorithm), k-means data clustering [140]
based on [141] (KM algorithm), mixture model using
expectation-maximization [31] (MM algorithm), mix-
ture model with degree corrections [111] (CM algo-
rithm), structural compression method [81] (IMD algo-
rithm), model-based propagation algorithm [120] (MP al-
gorithm), and the best community detection algorithm
considered above [129] (IMP algorithm). (NF and CM al-
gorithms are applied to each network for ten times, while
the best revealed partition is reported. NF, KM, MM and
CM algorithms demand the number of modules apriori.)

The algorithms are compared on GN2, HN7 and HN6
synthetic networks (Sec. V). All networks contain com-
munities and functional modules, where the latter are
connected into bipartite and tripartite structures. Again,
the links in the networks are placed according to pu.

Fig. 14 (bottom) shows the results of the comparison.
Only HP algorithm can accurately detect the modules
planted into these networks, and MP algorithm for small
enough p, while most other approaches fail. MM mixture
model also performs relatively well, whereas CM model
that incorporates additional constraints is relatively un-
stable on these networks (due to increased complexity).
Interestingly, simple KM data clustering performs much
better than many other state-of-the-art algorithms [141].

The analysis does not include approaches that group
nodes based on their network properties [28]. However,
these also reveal groups that are not structural modules.
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FIG. 15. (Color online) Comparison of network modeling

on GN and GN2 synthetic networks (left and right, respec-
tively). (Results are estimates of the mean over 100 network
realizations, while bars show standard error of the mean.)

Appendix B: Network modeling

The section considers different network modeling tech-
niques represented by module factors v, (Eq. (13)). We
compare the strategy adopted withing HP algorithm with
three alternatives, where v, equal to 0, 0.5 or 1 for all
modules g (denoted CP, DP and FP algorithms). Hence,
CP algorithm is based on classical propagation between

19

neighboring nodes that can detect merely communities.
FP algorithm propagates labels through common neigh-
bors, which reveals functional modules. DP algorithm
is the default approach, where labels are simultaneously
propagated between and through (common) neighbors.

The strategies are compared on GN and GN2 synthetic
benchmark networks (App. A and Sec. V). GN networks
consist of only communities, while GN2 networks contain
communities and also functional modules. For both net-
works, the structure is controlled by a mixing parameter
i, i € [0,1]. For u = 0, all links are placed according
to the planted modules, whereas the networks are com-
pletely random for p = 1.

The results are shown in Fig. 15. CP algorithm can
accurately detect communities, while functional modules
are identified as a single group of nodes. Interestingly,
FP algorithm can reveal functional modules and also
communities, however, the stability of the algorithm is
rather challenged. DP algorithm performs reasonably
well on both networks, although the results can be im-
proved considerably (see HP algorithm).
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