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Abstract—Matching and merging of data from heterogeneous sources is a common need in various scenarios. Despite
numerous algorithms proposed in the recent literature, there is a lack of general and complete solutions combining different
dimensions arising during the matching and merging execution. We propose a general framework, and accompanying algorithms,
that allow joint control over various dimensions of matching and merging. To achieve superior performance, standard (relational)
data representation is enriched with semantics and thus elevated towards the real world situation. Data sources are merged
using collective entity resolution and redundancy elimination algorithms that are managed through the use of different contexts –
user, data and also trust contexts. Introduction of trust allows for an adequate trust management and efficient security assurance
which is, besides a general solution for matching and merging, the main novelty of the proposition.
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1 INTRODUCTION

W ITH the recent advent of Semantic Web and
open (on-line) data sources, merging of data

from heterogeneous sources is rapidly becoming a
common need in various fields. Different scenarios of
use include analyzing heterogeneous datasets collec-
tively, enriching data with some on-line data source
or reducing redundancy among datasets by merging
them into one. Literature provides several state-of-the-
art approaches for matching and merging, although
there is a lack of general solutions combining different
dimensions arising during the matching and merging
execution. We propose a general and complete solu-
tion that allows a joint control over these dimensions.

Data sources commonly include not only relational
data, but also semantically enriched data. Thus a
state-of-the-art solution should employ semantically
elevated algorithms, to fully exploit the data at hand.
However, due to a vast diversity of data sources, also
an adequate data architecture has to be employed. In
particular, the architecture should support all types
and formats of data, and provide appropriate data
for each algorithm. As algorithms favor different rep-
resentations and levels of semantics behind the data,
architecture should be structured appropriately.

Due to different origin of (heterogeneous) data
sources, the trustworthiness (or accuracy) of their
data can often be questionable. Specially, when many
such datasets are merged, the results are likely to
be inexact. A common approach for dealing with
data sources that provide untrustworthy or conflicting
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statements, is the use of trust management systems
and techniques. Thus matching and merging should
be advanced to a trust-aware level, to jointly optimize
trustworthiness of data and accuracy of matching
or merging. Such collective optimization can signif-
icantly improve over other approaches.

The article proposes a general framework for
matching and merging execution. An adequate data
architecture enables either pure relational data, in the
form of networks, or semantically enriched data, in
the form of ontologies. Different datasets are merged
using collective entity resolution and redundancy
elimination algorithms, enhanced with trust manage-
ment techniques. Algorithms are managed through
the use of different contexts that characterize each
particular execution, and can be used to jointly control
various dimensions of variability of matching and
merging execution.

The rest of the article is structured as follows. The
following section gives a brief overview of the related
work, focusing mainly on trust-aware matching and
merging. Next, section 3, presents employed data
architecture and discusses semantic elevation of the
proposition. Section 4 formalizes the notion of trust
and introduces the proposed trust management tech-
niques. General framework, and accompanying algo-
rithms, for matching and merging are presented in
section 5, and further discussed in section 6. Section 7
concludes the article.

2 RELATED WORK

Recent literature proposes several state-of-the-art so-
lutions for matching and merging data sources. Rele-
vant work and approaches exist in the field of data
integration [1], [2], [3], [4], data deduplication [5],



[6], [7], information retrieval, schema and ontology
matching [8], [9], [10], [11], and (relational) entity
resolution [1], [12], [13]. However, the propositions
mainly address only selected issues of more gen-
eral matching and merging problem. In particular,
approaches only partially support the variability of
the execution; commonly only homogeneous sources,
with predefined level of semantics, are employed; or
the approaches discard the trustworthiness of data
and sources of origin.

Literature also provides various trust-based, or
trust-aware, approaches for matching and merg-
ing [14], [15]. Although they formally exploit trust in
the data, they do not represent a general or complete
solution. Mainly, they explore the idea of Web of Trust,
to model trust or belief in different entities. Related
work (on Web of Trust) exists in the fields of identity
verification [16], information retrieval [17], [18], social
network analysis [19], [20], data mining and pattern
recognition [21], [22]. Our work also relates to more
general research of trust management and techniques
that provide formal means for computing with trust
(e.g. [23]).

3 DATA ARCHITECTURE

An adequate data architecture is of vital importance
for efficient matching and merging. Key issues arising
are as follows: (1) architecture should allow for data
from heterogeneous sources, commonly in various
formats; (2) semantical component of data should be
addressed properly; and (3) architecture should also
deal with (partially) missing and uncertain data.

To achieve superior performance, we propose a
three level architecture (Fig. 3). Standard relational
data representation on the bottom level (data level)
is enriched with semantics (semantic level) and thus
elevated towards the topmost real world level (abstract
level). Datasets on data level are represented with
networks, when the semantics are employed through
the use of ontologies.

Every dataset is (preferably) represented on data
and semantic level. Although both describe the same
set of entities on abstract level, the representation on
each level is independent from the other. This separa-
tion resides from the fact that different algorithms of
matching and merging execution privilege different
representations of data – either pure relational or
semantically elevated representation. Separation thus
results in more accurate and efficient matching and
merging, moreover, representations can complement
each other in order to boost the performance.

The following section gives a brief introduction
to networks, used for data level representation. Sec-
tion 3.2 describes ontologies and semantic elevation of
data level (i.e. semantic level). Proposed data architec-
ture is formalized and further discussed in section 3.3.

3.1 Representation with networks
Most natural representation of any relational domain
are networks. They are based upon mathematical ob-
jects called graphs. Informally speaking, graph consists
of a collection of points, called vertices, and links
between these points, called edges (Fig. 1). Let VN ,
EN be a set of vertices, edges for some graph N
respectively. We define N as N = (VN , EN ) where

VN = {v1, v2 . . . vn}, (1)
EN ⊆ {{vi, vj}| vi, vj ∈ VN ∧ i < j}. (2)

Edges are sets of vertices, hence they are not directed
(undirected graph). In the case of directed graphs equa-
tion (2) rewrites to

EN ⊆ {(vi, vj)| vi, vj ∈ VN ∧ i 6= j}, (3)

where (vi, vj) is an edge from vi to vj . The definition
can be further generalized by allowing multiple edges
between two vertices and loops (edges that connect
vertices with themselves). Such graphs are called
multigraphs (Fig. 1 (b)).

Fig. 1. (a) directed graph; (b) labeled undirected multi-
graph (labels are represented graphically); (c) network
representing a group of related traffic accidents (round
vertices correspond to participants and cornered cor-
respond to vehicles).

In practical applications we commonly strive to
store some additional information along with the ver-
tices and edges. Formally, we define labels or weights
for each node and edge in the graph – they represent
a set of properties that can also be described using
two attribute functions

AVN
: VN → ΣVN

1 × ΣVN
2 × . . . , (4)

AEN
: EN → ΣEN

1 × ΣEN
2 × . . . , (5)

AN = (AVN
, AEN

), where ΣVG
i , ΣEG

i are sets of all
possible vertex, edge attribute values respectively.

Networks are most commonly seen as labeled, or
weighted, multigraphs with both directed and undi-
rected edges (Fig. 1 (c)). Vertices of a network repre-
sent some entities, and edges represent relations be-
tween them. A (relational) dataset, represented with a
network on the data level, is thus defined as (N,AN ).



Fig. 2. Ontology representing various classes, relations and attributes related to traffic accidents and automobile
insurance domain. Classes are colored with orange, relations with blue and attributes with green. Key concepts
of the ontology are Event, Person, Driver, Witness, Owner and Vehicle.

3.2 Semantic elevation using ontologies

Ontologies are a tool for specifying the semantics of ter-
minology systems in a well defined and unambiguous
manner [24] (Fig. 2). They can simply be defined as a
network of entities, restricted and annotated with a set
of axioms. Let EO, AO be the sets of entities, axioms
for some ontology O respectively. Dataset, represented
with an ontology on semantic level, is defined as
O = (EO, AO) where

EO ⊆ EC ∪ EI ∪ ER ∪ EA, (6)
AO ⊆ {a| Ea

O ⊆ EO ∧ a axiom on Ea
O}. (7)

Entities EO consist of classes EC (concepts), individ-
uals EI (instances), relations ER (among classes and
individuals) and attributes EA (properties of classes);
and axioms AO are assertions (over entities) in a
logical form that together comprise the overall theory
described by ontology O.

This article focuses on ontologies based on descrip-
tive logic that, besides assigning meaning to axioms,
enable also reasoning capabilities. The latter can be
used to compute consequences of the previously made

assumptions (queries), or to discover non-intended
consequences and inconsistencies within the ontology.

With the advent of Semantic Web, ontologies are
rapidly gaining importance. One of the most promi-
nent applications of ontologies is in the domain of
semantic interoperability (among heterogeneous soft-
ware systems). While pure semantics concerns the
study of meanings, semantic elevation means to achieve
semantic interoperability and can be considered as
a subset of information integration (including data
access, aggregation, correlation and transformation).

Thus one of the key aspects of semantic elevation
is to derive a common representation of classes, indi-
viduals, relations and attributes within some ontology.
We employ a concept of knowledge chunks [9], where
each entity is represented with its name and a set of
semantic relations (or attributes), their values and (on-
tology) identifiers. All of the data about a certain entity
is thus transformed into attribute-value format, with
an identifier of the data source of origin appended
to each value. Knowledge chunks, denoted k ∈ K,
thus provide a (common) synthetic representation of
an ontology that is used during the matching and



merging execution. For more details on knowledge
chunks, and their construction from a RDF(S) (Re-
source Description Framework Schema) repository or an
OWL (Web Ontology Language) ontology, see [9], [25].

Notion of knowledge chunks is introduced also on
data level. Hence, each network is represented in the
same, easily maintainable, form, allowing for common
matching and merging algorithms. Exact description
of the transformation between networked data and
knowledge chunks is not given, although it is very
similar to the definition of inferred axioms in equa-
tion (12).

3.3 Three level architecture

As previously stated, every dataset is (independently)
represented on three levels – data, semantic and ab-
stract level (Fig. 3). Bottommost data level holds data
in a pure relational format (i.e. networks), mainly
to facilitate state-of-the-art relational algorithms for
matching. Next level, semantic level, enriches data with
semantics (i.e. ontologies), to further enhance match-
ing and to promote semantic merging execution. Data
on both levels represent entities of topmost abstract
level, which serves merely as an abstract (artificial)
representation of all the entities, used during match-
ing and merging execution.

The information captured by data level is a subset
of that of semantic level. Similarly, the information
captured by semantic level is a subset of that of ab-
stract level. This information-based view of the architec-
ture is seen in Fig. 3 (a). However, representation on
each level is completely independent from the others,
due to absolute separation of data. This provides an
alternative data-based view, seen in Fig. 3 (b).

Fig. 3. (a) information-based view of the data architec-
ture; (b) data-based view of the data architecture.

To manage data and semantic level independently
(or jointly), a mapping between the levels is required.
In practice, data source could provide datasets on
both, data and semantic level. The mapping is in that
case trivial (i.e. given). However, more commonly,
data source would only provide datasets on one of
the levels, and the other has to be inferred.

Let (N,AN ) be a dataset, represented as a network
on data level. Without loss for generality, we assume
that N is an undirected network. Inferred ontology
(ẼÕ, ÃÕ) on semantic level is defined with

ẼC = {vertex, edge}, (8)
ẼI = VN ∪ EN , (9)
ẼR = {isOf, isIn}, (10)
ẼA = {AVN

, AEN
} (11)

and

ÃÕ = {v isOf vertex| v ∈ VN} (12)
∪ {e isOf edge| e ∈ EN}
∪ {v isIn e| v ∈ VN ∧ e ∈ EN ∧ v ∈ e}
∪ {v.AVN

= a| v ∈ VN ∧AVN
(v) = a}

∪ {e.AEN
= a| e ∈ EN ∧AEN

(e) = a}.

We denote IN : (N,AN ) 7→ (ẼÕ, ÃÕ). One can
easily see that I−1N ◦ IN is an identity (transformation
preserves all the information).

On the other hand, given a dataset (EO, AO), rep-
resented with an ontology on semantic level, inferred
(undirected) network (Ñ , ÃÑ ) on data level is defined
with

ṼÑ = EO ∩ EI , (13)
ẼÑ = {Ea

O ∩ EI | a ∈ AO ∧ Ea
O ⊆ EO} (14)

and

ÃṼÑ
: ṼÑ → EC × EA, (15)

ÃẼÑ
: ẼÑ → ER. (16)

Instances of ontology are represented with the vertices
of the network, and axioms with its edges. Classes and
relations are, together with the attributes, expressed
through vertex, edge attribute functions.

We denote IO : (EO, AO) 7→ (Ñ , ÃÑ ). Transfor-
mation IO discards purely semantic information (e.g.
relations between classes), as it cannot be represented
on the data level. Thus IO cannot be inverted as IN .
However, all the data, and data related information,
is preserved (e.g. relations among individuals, and
individuals and classes).

Due to limitations of networks, only axioms, relat-
ing at most two individuals in EO, can be represented
with the set of edges ẼÑ (equation (14)). When this is
not sufficient, hypernetworks (or hypergraphs1) should
be employed instead. Nevertheless, networks should
suffice in most cases.

One more issue has to be stressed. Although IN
and IO give a “common” representation of every
dataset, the transformations are completely differ-
ent. For instance, presume (N,AN ) and (EO, AO)
are (given) representations of the same dataset. Then

1. Hypergraphs are similar to ordinary graphs only that the edges
can connect multiple vertices.



IN (N,AN ) 6= (EO, AO) and IO(EO, AO) 6= (N,AN ) in
general – inferred ontology, network does not equal
given ontology, network respectively. The former non-
equation resides in the fact that network (N,AN )
contains no knowledge of the (pure) semantics within
ontology (EO, AO); and the latter resides in the fact
that IO has no information of the exact representation
used for (N,AN ). Still, transformations IN and IO can
be used to manage data on a common basis.

Last, we discuss three key issues regarding an ade-
quate data architecture, presented in section 3. Firstly,
due to variety of different data formats, a mutual
representation must be employed. As the data on both
data and semantic level is represented in the form of
knowledge chunks (section 3.2), every piece of data
is stored in exactly the same way. This allows for
common algorithms of matching and merging and
makes the data easily manageable.

Furthermore, introduction of knowledge chunks
naturally deals also with missing data. As each chunk
is actually a set of attribute-value pairs, missing data
only results in smaller chunks. Alternatively, missing
data could be randomly inputted from the rest and
treated as extremely uncertain or mistrustful (sec-
tion 4).

Secondly, semantical component of data should
be addressed properly. Proposed architecture allows
for simple (relational) data and also semantically
enriched data. Hence no information is discarded.
Moreover, appropriate transformations make all data
accessible on both data and semantic level, providing
for specific needs of each algorithm.

Thirdly, architecture should deal with (partially)
missing and uncertain or mistrustful data, which is
thoroughly discussed in the following section.

4 TRUST AND TRUST MANAGEMENT

When merging data from different sources, these are
often of different origin and thus their trustworthi-
ness (or accuracy) can be questionable. For instance,
personal data of participants in a traffic accident is
usually more accurate in the police record of the
accident, then inside participants’ social network pro-
files. Nevertheless, an attribute from less trusted data
source can still be more accurate than an attribute
from more trusted one – a relationship status (e.g.
single or married) in the record may be outdated,
while such type of information is inside the social
network profiles quite often up-to-date.

A complete solution for matching and merging
execution should address such problems as well. A
common approach for dealing with data sources that
provide untrustworthy or conflicting statements, is
the use of trust management (systems). These are, along-
side the concept of trust, both further discussed in
sections 4.1 and 4.2.

4.1 Definition of trust

Trust is a complex psychological-sociological phe-
nomenon. Despite of, people use term trust in ev-
eryday life widely, and with very different meanings.
Most common definition states that trust is an assured
reliance on the character, ability, strength, or truth of
someone or something.

In the context of computer networks, trust is mod-
eled as a relationship between entities. Formally, we
define a trust relationship as

ωE : E × E → ΣE (17)

where E is a set of entities and ΣE a set of all
possible, numerical or descriptive, trust values. ωE

thus represents one entity’s attitude towards another
and is used to model trust(worthiness) TE of all
entities in E. To this end, different trust modeling
methodologies and systems can be employed, from
qualitative to quantitative (e.g. [14], [15], [23]).

We introduce trust on three different levels. First,
we define trust on the level of data source, in order to
represent trustworthiness of the source in general. Let
S be the set of all data sources. Their trust is defined
as TS : S → [0, 1], where higher values of TS represent
more trustworthy source.

Second, we define trust on the level of attributes
(or semantic relations) within the knowledge chunks.
The trust in attributes is naturally dependent on the
data source of origin, and is defined as TAs : As →
[0, 1], where As is the set of attributes for data source
s ∈ S. As before, higher values of TAs

represent more
trustworthy attribute.

Last, we define trust on the level of knowledge
chunks. Despite the trustworthiness of data source
and attributes within some knowledge chunk, its data
can be (semantically) corrupted, missing or other-
wise unreliable. This information is captured using
trustworthiness of knowledge chunks, and again de-
fined as TK : K → [0, 1], where K is a set of
all knowledge chunks. Although the trust relation-
ships (equation (17)), needed for the evaluation of
trustworthiness of data sources and attributes, are
(mainly) defined by the user, computation of trust
in knowledge chunks can be fully automated using
proper evaluation function (section 4.2).

Three levels of trust provide high flexibility during
matching and merging. For instance, attributes from
more trusted data sources are generally favored over
those from less trusted ones. However, by properly
assigning trust in attributes, certain attributes from
else less trusted data sources can prevail. Moreover,
trust in knowledge chunks can also assist in revealing
corrupted, and thus questionable, chunks that should
be excluded from further execution.

Finally, we define trust in some particular value
within a knowledge chunk, denoted trust value T . This
is the value in fact used during merging and matching



execution and is computed from corresponding trusts
on all three levels. In general, T can be an arbitrary
function of TS , TAs and TK . Assuming independence,
we calculate trust value by concatenating correspond-
ing trusts,

T = TS ◦ TAs
◦ TK . (18)

Concatenation function ◦ could be a simple multipli-
cation or some fuzzy logic operation (trusts should in
this case be defined as fuzzy sets).

4.2 Trust management
During merging and matching execution, trust val-
ues are computed using trust management algorithm
based on [15]. We begin by assigning trust values TS ,
TAs

for each data source, attribute respectively (we
actually assign trust relationships). Commonly, only
a subset of values must necessarily be assigned, as
others can be inferred or estimated from the first.
Next, trust values for each knowledge chunk are not
defined by the user, but are calculated using the chunk
evaluation function feval (i.e. TK = feval).

An example of such function is a density of inconsis-
tencies within some knowledge chunk. For instance,
when attributes Birth and Age of some particular
knowledge chunk mismatch, this can be seen as
an inconsistency. However, one must also consider
the trust of the corresponding attributes (and data
sources), as only inconsistencies among trustworthy
attributes should be considered. Formally, density of
inconsistencies is defined as

feval(k) =
N̂inc(k)−Ninc(k)

N̂inc(k)
, (19)

where k is a knowledge chunk, k ∈ K, Ninc(k) the
number of inconsistencies within k and N̂inc(k) the
number of all possible inconsistencies.

Finally, after all individual trusts TS , TAs
and TK

have been assigned, trust values T are computed
using equation (18). When merging takes place and
two or more data sources (or knowledge chunks)
provide conflicting attribute values, corresponding to
the same (resolved) entity, trust values T are used to
determine actual attribute value in the resulting data
source (or knowledge chunk). For further discussion
on trust management during matching and merging
see section 5.

5 MATCHING AND MERGING DATA SOURCES

Merging data from heterogeneous sources can be seen
as a two-step process. The first step resolves the real
world entities of abstract level, described by the data
on lower levels, and constructs a mapping between
the levels. This mapping is used in the second step
that actually merges the datasets at hand. We denote
these subsequent steps as entity resolution (i.e. match-
ing) and redundancy elimination (i.e. merging).

Matching and merging is employed in various sce-
narios. As the specific needs of each scenario vary,
different dimensions of variability characterize every
matching and merging execution. These dimensions
are managed through the use of contexts [9], [26]. Con-
texts allow a formal definition of specific needs arising
in diverse scenarios and a joint control over various
dimensions of matching and merging execution.

The following section discusses the notion of con-
texts more throughly and introduces different types
of contexts used. Next, sections 5.2, 5.3 describe
employed entity resolution and redundancy elimination
algorithms respectively. The general framework for
matching and merging is presented and formalized
in section 5.4, and discussed in section 6.

5.1 Contexts

Every matching and merging execution is charac-
terized by different dimensions of variability of the
data, and mappings between. Contexts are a formal
representation of all possible operations in these di-
mensions, providing for specific needs of each sce-
nario. Every execution is thus characterized with the
contexts it defines (Fig. 4), and can be managed and
controlled through their use.

The idea of contexts originates in the field of re-
quirements engineering, where it has been applied to
model domain variability [26]. It has just recently been
proposed to model also variability of the matching
execution [9]. Our work goes one step further as
it introduces contexts, not bounded only to user or
scenario specific dimensions, but also data related and
trust contexts.

Fig. 4. Characterization of merging and matching
execution defining one context in user dimension, two
contexts in data dimension and all contexts in trust
dimension.

Formally, we define a context C as

C : D → {true, false}, (20)

where D can be any simple or composite domain. A
context simply limits all possible values, attributes, re-
lations, knowledge chunks, datasets, sources or other,
that are considered in different parts of matching and



merging execution. Despite its simple definition, a
context can be a complex function. It is defined on
any of the architecture levels, preferably on all. Let
CA, CS and CD represent the same context on abstract,
semantic and data level respectively. The joint context
is defined as

CJ = CA ∧ CS ∧ CD. (21)

In the case of missing data (or contexts), only appro-
priate contexts are considered. Alternatively, contexts
could be defined as fuzzy sets, to address also the
noisiness of data. In that case, a fuzzy AND operation
should be used to derive joint context CJ .

We distinguish between three types of contexts due
to different dimensions characterized (Fig. 4).

user User or scenario specific contexts are used
mainly to limit the data and control the exe-
cution. This type coincides with dimensions
identified in [9]. An example of user context
is a simple selection or projection of the data.

data Data related contexts arise from dealing with
relational or semantic data, and various for-
mats of data. Missing or corrupted data can
also be managed through the use of these
contexts.

trust Trust and data uncertainty contexts provide
for an adequate trust management and effi-
cient security assurance between and during
different phases of execution. An example of
trust context is a definition of required level
of trustworthiness of data or sources.

Detailed description of each context is out of scope
of this article. For more details on (user) contexts
see [9].

5.2 Entity resolution
First step of matching and merging execution is to
resolve the real world entities on abstract level, de-
scribed by the data on lower levels. Thus a mapping
between the levels (entities) is constructed and used
in consequent merging execution. Recent literature
proposes several state-of-the-art approaches for entity
resolution (e.g. [5], [1], [12], [13], [6]). A naive ap-
proach is a simple pairwise comparison of attribute
values among different entities. Although, such an
approach could already be sufficient for flat data, this
is not the case for relational data, as the approach
completely discards relations between the entities.
For instance, when two entities are related to similar
entities, they are more likely to represent the same
entity. However, only the attributes of the related
entities are compared, thus the approach still discards
the information if related entities resolve to the same
entities – entities are even more likely to represent the
same entities when their related entities resolve to,
not only similar, but the same entities. An approach
that uses this information, and thus resolves entities

altogether (in a collective fashion), is denoted collective
(relational) entity resolution algorithm.

We employ a state-of-the-art (collective) relational
clustering algorithm proposed in [12]. To further en-
hance the performance, algorithm is semantically el-
evated and adapted to allow for proper and efficient
trust management.

The algorithm is actually a greedy agglomerative
clustering approach. Entities (on lower levels) are
represented as a group of clusters C, where each
cluster represents a set of entities that resolve to the
same entity on abstract level. At the beginning, each
(lower level) entity resides in a separate cluster. Then,
at each step, the algorithm merges two clusters in
C that are most likely to represent the same entity
(most similar clusters). When the algorithm unfolds,
C holds a mapping between the entities on each level
(i.e. maps entities on lower levels through the entities
on abstract level).

During the algorithm, similarity of clusters is com-
puted using a joint similarity measure (equation (28)),
combining attribute, relational and semantic similarity.
First is a basic pairwise comparison of attribute val-
ues; second introduces relational information into the
computation of similarity (in a collective fashion); and
third represents semantic elevation of the algorithm.

Let ci, cj ∈ C be two clusters of entities. Us-
ing knowledge chunk representation, attribute cluster
similarity is defined as

simA(ci, cj) = (22)∑
ki,j∈ci,j∧a∈ki,j

trust(ki.a, kj .a)simA(ki.a, kj .a),

where ki,j ∈ K are knowledge chunks, a ∈ As is an
attribute and simA(ki.a, kj .a) similarity between two
attribute values. (Attribute) similarity between two
clusters is thus defined as a weighted sum of similar-
ities between each pair of values in each knowledge
chunk. Weights are assigned due to trustworthiness
of values – trust in values ki.a and kj .a is computed
using

trust(ki.a, kj .a) = min{T (ki.a), T (kj .a)}. (23)

Hence, when even one of the values is uncertain or
mistrustful, similarity is penalized appropriately, to
prevent matching based on (likely) incorrect informa-
tion.

For computation of similarity between actual at-
tribute values simA(ki.a, kj .a) (equation (22)), differ-
ent measures have been proposed. Levenshtein dis-
tance [27] measures edit distance between two strings
– number of insertions, deletions and replacements
that traverse one string into the other. Another class
of similarity measures are TF-IDF2-based measures
(e.g. Cos TF-IDF and Soft TF-IDF [28], [29]). They treat

2. Term Frequency-Inverse Document Frequency.



attribute values as a bag of words, thus the order of
words in the attribute has no impact on the similarity.
Other attribute measures are also Jaro [30] and Jaro-
Winkler [31] that count number of matching characters
between the attributes.

Different similarity measures prefer different types
of attributes. TF-IDF-based measures work best with
longer strings (e.g. descriptions), when other prefer
shorter strings (e.g. names). For numerical attributes,
an alternative measure has to be employed (e.g. sim-
ple evaluation, followed by a numerical comparison).
Therefore, when computing attribute similarity for a
pair of clusters, different attribute measures are used
with different attributes (equation (22)).

Using data level representation, we define a neigh-
borhood for vertex v ∈ VN as

nbr(v) = {vn| vn ∈ VN ∧ {v, vn} ∈ EN} (24)

and cluster c ∈ C as

nbr(c) = {cn| cn ∈ C ∧ v ∈ c ∧ cn ∩ nbr(v) 6= ∅}. (25)

Neighborhood of a vertex is defined as a set of con-
nected vertices. Similarly, neighborhood of a cluster
is defined as a set of clusters, connected through the
vertices within.

For a (collective) relational similarity measure, we
adapt a Jaccard coefficient [12] measure for trust-aware
(relational) data. Jaccard coefficient is based on Jaccard
index and measures the number of common neigh-
bors of two clusters, considering also the size of the
clusters’ neighborhoods – when the size of neighbor-
hoods is large, the probability of common neighbors
increases. We define

simR(ci, cj) =

∑
cn∈nbr(ci)∩nbr(cj) trust(e

T
in, e

T
jn)

|nbr(ci) ∪ nbr(cj)|
(26)

where eTin, e
T
jn is the most trustworthy edge connect-

ing vertices in cn and ci, cj respectively (for the com-
putation of trust(eTin, e

T
jn), a knowledge chunk repre-

sentation of eTin, e
T
jn is used). (Relational) similarity be-

tween two clusters is defined as the size of a common
neighborhood (considering also the trustworthiness
of connecting relations), decreased due to the size of
clusters’ neighborhoods. Entities related to a relatively
large set of entities that resolve to the same entities on
abstract level, are thus considered to be similar.

Alternatively, one could use some other similarity
measure like Adar-Adamic similarity [32], random walk
measures, or measures considering also the ambiguity
of attributes or higher order neighborhoods [12].

For the computation of the last, semantic, similarity,
we propose a random walk like approach. Using a
semantic level representation of clusters ci, cj ∈ C,
we do a number of random assumptions (queries)
over underlying ontologies. Let Nass be the number
of times the consequences (results) of the assumptions
made matched, Ñass number of times the conse-
quences were undefined (for at least one ontology)

and N̂ass the number of all assumptions made. Fur-
thermore, let NT

ass be the trustworthiness of ontol-
ogy elements used for reasoning in assumptions that
matched (computed as a sum of products of trusts on
the paths of reasoning, similar as in equation (23)).
Semantic similarity is then defined as

simS(ci, cj) =
NT

ass(ci, cj)

N̂ass(ci, cj)− Ñass(ci, cj)
. (27)

Similarity represents the trust in the number of times
ontologies produced the same consequences, not con-
sidering assumptions that were undefined for some
ontology. As the expressiveness of different ontolo-
gies vary, and some of them are even inferred from
relational data, many of the assumptions could be
undefined for some ontology. Still, for N̂ass(ci, cj) −
Ñass(ci, cj) large enough, equation (27) gives a good
approximation of semantic similarity.

Using attribute, relational and semantic similarity
(equations (22), (26) and (27)) we define a joint simi-
larity for two clusters as

sim(ci, cj) =
1

δA + δR + δS
(28)

(δAsimA(ci, cj) + δRsimR(ci, cj) + δSsimS(ci, cj)),

where δA, δR and δS are weights, set due to the scale
of relational and semantical information within the
data. For instance, setting δR = δS = 0 reduces the
algorithm to a naive pairwise comparison of attribute
values, which should be used when no relational or
semantic information is present.

Finally, we present the collective clustering algo-
rithm employed for entity resolution (algorithm 1).

First, the algorithm initializes clusters C and prior-
ity queue of similarities Q, considering the current set
of clusters (lines 1-5). Each cluster represents at most
one entity as it is composed out of a single knowledge
chunk. Algorithm then, at each iteration, retrieves cur-
rently the most similar clusters and merges them (i.e.
matching of resolved entities), when their similarity is
greater than threshold θS (lines 7-11). As clusters are
stored in the form of knowledge chunks, matching in
line 11 results in a simple concatenation of chunks.
Next, lines 12-17 update similarities in the priority
queue Q, and lines 18-22 insert (or update) also neigh-
bors’ similarities (required due to relational similarity
measure). When the algorithm terminates, clusters C
represent chunks of data resolved to the same entity
on abstract level. This mapping between the entities
(i.e. their knowledge chunk representations) is used
to merge the data in the next step.

Threshold θS represents minimum similarity for
two clusters that are considered to represent the same
entities. Optimal value should be estimated from the
data.



Algorithm 1 Collective entity resolution
1: Initialize clusters as C = {{k}| k ∈ K}
2: Initialize priority queue as Q = ∅
3: for ci, cj ∈ C and sim(ci, cj) ≥ θS do
4: Q.insert(sim(ci, cj), ci, cj)
5: end for
6: while Q 6= ∅ do
7: (sim(ci, cj), ci, cj)← Q.pop() {Most similar.}
8: if sim(ci, cj) < θS then
9: return C

10: end if
11: C ← C − {ci, cj} ∪ {ci ∪ cj} {Matching.}
12: for (sim(cx, ck), cx, ck) ∈ Q and x ∈ {i, j} do
13: Q.remove(sim(cx, ck), cx, ck)
14: end for
15: for ck ∈ C and sim(ci ∪ cj , ck) ≥ θS do
16: Q.insert(sim(ci ∪ cj , ck), ci ∪ cj , ck)
17: end for
18: for cn ∈ nbr(ci ∪ cj) do
19: for ck ∈ C and sim(cn, ck) ≥ θS do
20: Q.insert(sim(cn, ck), cn, ck) {Or update.}
21: end for
22: end for
23: end while
24: return C

Three more aspects of the algorithm ought to be
discussed. Firstly, pairwise comparison of all clus-
ters during the execution of the algorithm is com-
putationally expensive, specially in early staged of
the algorithm. Authors in [12] propose an approach
in which they initially find groups of chunks that
could possibly resolve to the same entity. In this
way, the number of comparisons can be significantly
decreased.

Secondly, due to the nature of (collective) relational
similarity measures, they are ineffective when none
of the entities has already been resolved (e.g. in early
stages of the algorithm). As the measure in equa-
tion (26) counts the number of common neighbors,
this always evaluates to 0 in early stages (in general).
Thus relative similarity measures should be used
after the algorithm has already resolved some of the
entities, using only attribute and semantic similarities.

Thirdly, in the algorithm we implicitly assumed that
all attributes, (semantic) relations and other, have the
same names or identifiers in every dataset (or knowl-
edge chunk). Although, we can probably assume that
all attributes within datasets, produced by the same
source, have same and unique names, this cannot be
generalized.

We propose a simple, yet effective, solution. The
problem at hand could be denoted attribute resolution,
as we merely wish to map attributes between the
datasets. Thus we can use the approach proposed for
entity resolution. Entities are in this case attributes

that are compared due to their names, and also due
to different values they hold; and relations between
entities (attributes) represent co-occurrence in the
knowledge chunks. As certain attributes commonly
occur with some other attributes, this would further
improve the resolution.

Another possible improvement is to address also
the attribute values in a similar manner. As different
values can represent the same underlying value, value
resolution, done prior to attribute resolution, can even
further improve the performance.

5.3 Redundancy elimination

After the entities, residing in the data, have been
resolved (section 5.2), the next step is to eliminate
the redundancy and merge the datasets at hand. This
process is somewhat straightforward as all data is
represented in the form of knowledge chunks. Thus
we merely need to merge the knowledge chunks,
resolved to the same entity on abstract level. Redun-
dancy elimination is done entirely on semantic level,
to preserve all the knowledge inside the data.

When knowledge chunks hold disjoint data (i.e.
attributes), they can simply be concatenated together.
However, commonly various chunks would provide
values for the same attribute and, when these values
are inconsistent, they need to be handled appropri-
ately. A naive approach would count only the number
of occurrences of some value, when we consider also
their trustworthiness, to determine the most probable
value for each attribute.

Let c ∈ C be a cluster representing some entity
on abstract level (resolved in the previous step), let
k1, k2 . . . kn ∈ c be its knowledge chunks and let kc

be the merged knowledge chunk, we wish to obtain.
Furthermore, for some attribute a ∈ A·, let Xa be a
random variable measuring the true value of a and let
Xa

i be the random variables for a in each knowledge
chunk it occurs (i.e. ki.a). Value of attribute a for the
merged knowledge chunk kc is then defined as

arg max
v

P (Xa = v|
∧
i

Xa
i = ki.a). (29)

Each attribute is thus assigned the most probable
value, given the evidence observed (i.e. values ki.a).
By assuming pair-wise independence among Xa

i (con-
ditional on Xa) and uniform distribution of Xa equa-
tion (29) simplifies to

arg max
v

∏
i

P (Xa
i = ki.a|Xa = v). (30)

Finally, conditional probabilities in equation (30) are
approximated with trustworthiness of values,

P (Xa
i |Xa) ≈

{
T (ki.a) for ki.a = v (31a)
1− T (ki.a) for ki.a 6= v (31b)



Fig. 5. Entity resolution and redundancy elimination for two relational datasets, representing a group of traffic
accidents (above). One dataset is also annotated with ontology in Fig. 2.

hence

kc.a = arg max
v

∏
ki.a=v

T (ki.a)
∏

ki.a6=v

1− T (ki.a). (32)

Only knowledge chunks containing attribute a are
considered.

We present the proposed redundancy elimination
algorithm (algorithm 2).

Algorithm 2 Redundancy elimination

1: Initialize knowledge chunks KC

2: for c ∈ C and a ∈ A· do
3: kc.a = arg maxv

∏
k∈c∧k.a=v T (k.a)

∏
k∈c∧k.a 6=v 1−

T (k.a)
4: end for
5: return KC

The algorithm uses knowledge chunk represen-
tation of semantic level. First, it initializes merged
knowledge chunks kc ∈ KC . Then, for each attribute
kc.a, it finds the most probable value among all
given knowledge chunks (line 3). When the algo-
rithm unfolds, knowledge chunks KC represent a
merged dataset, with resolved entities and eliminated
redundancy. Each knowledge chunk kc corresponds
to unique entity on abstract level, and each attribute
holds the most trustworthy value.

At the end, only the data that was actually pro-
vided by some data source, should be preserved. Thus
all inferred data (through IN or IO; section 3.3) is
discarded, as it is merely an artificial representation
needed for (common) entity resolution and redun-
dancy elimination. Still, all provided data and seman-
tical information is preserved and properly merged
with the rest. Hence, although redundancy elimina-
tion is done on semantic level, resulting dataset is
given on both data and semantic level (that comple-
ment each other).

Last, we discuss the assumptions of independence
among Xa

i and uniform distribution of Xa. Clearly,
both assumptions are violated, still the former must be
made in order for the computation of most probable
value to be feasible. However, the latter can be elim-
inated when distribution of Xa can be approximated
from some large-enough dataset.

5.4 General framework
Proposed entity resolution and redundancy elimina-
tion algorithms (sections 5.2, 5.3) are integrated into a
general framework for matching and merging (Fig. 6).
Framework represents a complete solution, allowing a
joint control over various dimensions of matching and
merging execution. Each component of the framework
is briefly presented in the following, and further
discussed in section 6.



Fig. 6. General framework for matching and merging data from heterogeneous sources.

Initially, data from various sources is preprocessed
appropriately. Every network or ontology is trans-
formed into a knowledge chunk representation and,
when needed, also inferred on an absent architecture
level (section 3.3). After preprocessing is done, all
data is represented in the same, easily manageable,
form, allowing for common, semantically elevated,
subsequent analyses.

Prior to entity resolution, attribute resolution is
done (section 5.2). The process resolves and matches
attributes in the heterogeneous datasets, using the
same algorithm as for entity resolution. As all data
is represented in the form of knowledge chunks,
this actually unifies all the underlying networks and
ontologies.

Next, proposed entity resolution and redun-
dancy elimination algorithms are employed (sec-
tions 5.2, 5.3). The process thus first resolves entities in
the data, and then uses this information to eliminate
the redundancy and to merge the datasets at hand.
Algorithms explore not only the relations in the data,
but also the semantics behind it, to further improve
the performance.

Last, postprocessing is done, in order to discard all
artificially inferred data and to translate knowledge
chunks back to the original network or ontology
representation (section 3). Throughout the entire ex-
ecution, components are jointly controlled through
(defined) user, data and trust contexts (section 5.1).
Furthermore, contexts also manage the results of the
algorithms, to account for specific needs of each sce-
nario.

Every component of the framework is further en-
hanced, to allow for proper trust management, and
thus also for efficient security assurance. In particular,
all the similarity measures for entity resolution are
trust-aware, moreover, trust is even used as a primary
evidence in the redundancy elimination algorithm.
The introduction of trust-aware and security-aware
algorithms represents the main novelty of the propo-
sition.

6 DISCUSSION

The following section discusses key aspects of the
proposition.

Proposed framework for matching and merging
represents a general and complete solution, applicable
in all diverse areas of use. Introduction of contexts
allows a joint control over various dimensions of
matching and merging variability, providing for spe-
cific needs of each scenario. Furthermore, data archi-
tecture combines simple (relational) data with seman-
tically enriched data, which makes the proposition
applicable for any data source. Framework can thus
be used as a general solution for merging data from
heterogeneous sources, and also merely for matching.

The fundamental difference between matching, in-
cluding only attribute and entity resolution, and
merging, including also redundancy elimination, is,
besides the obvious, in the fact that merged data is
read-only. Since datasets, obtained after merging, do
not necessarily resemble the original datasets, the data
cannot be altered thus the changes would apply also
in the original datasets. Alternative approach is to
merely match the given datasets and to merge them
only on demand. When altering matched data, user
can change the original datasets (that are in this phase
still represented independently) or change the merged
dataset (that was previously demanded for), in which
case he must also provide an appropriate strategy,
how the changes should be applied in the original
datasets.

Proposed algorithms employ relational data, se-
mantically enriched with ontologies. With the advent
of Semantic Web, ontologies are gaining importance
mainly due to availability of formal ontology lan-
guages. These standardization efforts promote several
notable uses of ontologies like assisting in commu-
nication between people, achieving interoperability
(communication) among heterogeneous software sys-
tems and improving the design and quality of soft-
ware systems. One of the most prominent applica-
tions is in the domain of semantic interoperability.



While pure semantics concerns the study of mean-
ings, semantic elevation means to achieve semantic
interoperability and can be considered as a subset of
information integration (including data access, aggre-
gation, correlation and transformation). Semantic ele-
vation of proposed matching and merging framework
represents one major step towards this end.

Use of trust-aware techniques and algorithms in-
troduces several key properties. Firstly, an adequate
trust management provides means to deal with un-
certain or questionable data sources, by modeling
trustworthiness of each provided value appropriately.
Secondly, algorithms jointly optimize not only entity
resolution or redundancy elimination of provided
datasets, but also the trustworthiness of the result-
ing datasets. The latter can substantially increase the
accuracy. Thirdly, trustworthiness of data can be used
also for security reasons, by seeing trustworthy values
as more secure. Optimizing the trustworthiness of
matching and merging thus also results in an efficient
security assurance.

Next, we discuss the main rationale behind the in-
troduction of contexts. Although, contexts are merely
a way to guide the execution of some algorithm,
their definition is relatively different from that of any
simple parameter. The execution is controlled with
mere definition of the contexts, when in the case
of parameters, it is controlled by assigning different
values. For instance, when default behavior is desired,
the parameters still need to be assigned, when in the
case of contexts, the algorithm is used as it is. For any
general solution, working with heterogeneous clients,
such behavior can significantly reduce the complexity.

As different contexts are used jointly throughout
matching and merging execution, they allow a col-
lective control over various dimensions of variability.
Furthermore, each execution is controlled and also
characterized with the context it defines, which can
be used to compare and analyze different executions
or matching and merging algorithms.

Last, we briefly discuss a possible disadvantage
of the proposed framework. As the framework rep-
resents a general solution, applicable in all diverse
domains, the performance of some domain-specific
approach or algorithm can still be superior. However,
such approaches commonly cannot be generalized
and are thus inappropriate for practical (general) use.

7 CONCLUSION

Article proposes a general framework, and accom-
panying algorithms, for matching and merging data
from heterogeneous sources. All the proposed al-
gorithms are trust-aware, which enables the use of
appropriate trust management and security assurance
techniques. An adequate data architecture supports
not only (pure) relational data, but also semantically

enriched data, to promote semantically elevated anal-
yses that thoroughly explore the data at hand. Match-
ing and merging is done using state-of-the-art col-
lective entity resolution and redundancy elimination
algorithms that are managed and controlled through
the use of different contexts. Framework thus allows
a joint control over various dimensions of variability
of matching and merging execution.

Further work will include empirical evaluation of
the proposition on some large testbeds. Next, soft
computing and fuzzy logic will be introduced for
contexts manipulation and trust management, to pro-
vide for inexactness of contexts and ambiguity of
trust phenomena. Moreover, trust management will
be advanced to a collective approach, resulting also in
a collective redundancy elimination algorithm. Last,
all proposed algorithms will be adapted to hyper-
networks (or hypergraphs), to further generalize the
framework.
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