
Software Systems through Complex Networks Science:
Review, Analysis and Applications

Lovro Šubelj
University of Ljubljana

Faculty of Computer and Information Science
Tržaška cesta 25, SI-1000 Ljubljana, Slovenia

lovro.subelj@fri.uni-lj.si

Marko Bajec
University of Ljubljana

Faculty of Computer and Information Science
Tržaška cesta 25, SI-1000 Ljubljana, Slovenia

marko.bajec@fri.uni-lj.si

ABSTRACT
Complex software systems are among most sophisticated
human-made systems, yet only little is known about the
actual structure of ’good’ software. We here study differ-
ent software systems developed in Java from the perspec-
tive of network science. The study reveals that network
theory can provide a prominent set of techniques for the
exploratory analysis of large complex software system. We
further identify several applications in software engineering,
and propose different network-based quality indicators that
address software design, efficiency, reusability, vulnerability,
controllability and other. We also highlight various interest-
ing findings, e.g., software systems are highly vulnerable to
processes like bug propagation, however, they are not easily
controllable.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures, software science

General Terms
Theory, algorithms, experimentation.

Keywords
Software systems, Software engineering, Software networks,
Network analysis.

1. INTRODUCTION
Complex software systems are among most sophisticated

systems ever created by human. Nevertheless, only little is
known about the actual structure and quantitative proper-
ties of large software systems [6]. For instance, in the context
of software engineering, one is interested in how ’good’ soft-
ware looks like. Commonly adopted approaches and tech-
niques fail to give a comprehensive answer [5, 7], moreover,
there is also a lack of a simple but yet rigorous framework for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoftwareMining ’12 , August 12, Beijing, China
Copyright 2012 ACM 978-1-4503-1560-9/12/08 ...$15.00.

software analysis (to our knowledge). The above dilemma
was denoted software law problem [6], which urges towards
identifying (physical) laws obeyed by software systems that
could be used in practical applications.

Networks possibly provide the most adequate framework
for the analysis of the structure of complex systems like
software projects1. Also, due to their simple and intelli-
gible form, analysis of different networks has already pro-
vided several significant discoveries in the last decade [46,
3, 16, 23]. Note that the adoption of software networks is
not novel [35, 27, 19, 39], however, network analysis is still
only rarely used in software engineering. The main purpose
of this study is thus to highlight different techniques devel-
oped in the field of network analysis, and to expose their
use in software comprehension, development and engineer-
ing. We review most of the past work on different types of
software networks, whereas we also include network analysis
techniques proposed just recently [23, 44]. (Note that the
main focus of the paper is merely a review, rather than a de-
tailed comparison of network analysis techniques with other
approaches.)

The study in the paper analyses software networks on dif-
ferent levels of granularity. First, we address the macro-
scopic properties of software networks like scale-free and
small-world phenomena [46, 3] that are related to the struc-
ture and design of the entire project, or projects, represented
by the network. Second, we analyze the microscopic prop-
erties of individual nodes, with special emphasis on differ-
ent dynamical processes occurring on software networks like
bug propagation [2, 30]. The above can be related to soft-
ware quality, complexity, reusability, robustness, vulnerabil-
ity and controllability. Third, we also identify mesoscopic
structural modules within software networks [16, 44] and
show their applicability in the context of software abstrac-
tion and refactoring. The paper thus exposes network analy-
sis as a prominent set of techniques for software engineering.

The rest of the paper is structured as follows. Section 2
introduces software networks used in the study. Section 3
analyzes different characteristics of adopted networks and
discusses their use in software engineering. Some applica-
tions of the presented techniques are given in Section 4, while
Section 5 concludes the paper.

2. SOFTWARE NETWORKS
Various types of networks have been proposed for the

analysis of the structure of complex software systems. For

1Throughout the paper, the term project refers to a reposi-
tory of software code.



Figure 1: (left) A simple Java class and the corresponding part of class dependency network. Direction
of links is (mostly) just the opposite to the flow of information. (right) Class dependency network of java

(circles) and javax (triangles) namespaces of Java language.

Table 1: Properties of class dependency networks used in the study.
Network Project n m k LCC |A| |P |

flmng Flamingo 4.1 (GUI components) [39] 141 269 3.82 0.88 153 18
colt Colt 1.2.0 (scientific computation) [39] 243 720 5.93 0.94 267 21
jung JUNG 2.0.1 (network analysis) [39] 317 719 4.54 0.96 357 41
org Java 1.6.0.7 (org namespace) [39] 709 3571 10.07 0.69 778 50

weka Weka 3.6.6 (data mining framework) 953 4097 8.60 0.98 1054 84
javax Java 1.6.0.7 (javax namespace) [39] 1595 5287 6.63 0.44 1889 118
java Java 1.6.0.7 (java namespace) [39] 1516 10049 13.26 1.00 1518 56

instance, software architecture maps [35], software mirror
graphs [6], class, method and package collaboration graphs [17],
subrutine call graphs [27], inter-package dependency net-
works [21], software class diagrams [37] and class depen-
dency networks [39], to name just a few. Networks mainly
divide whether they are constructed from source code, byte
code or program execution traces, and due to the level of
software architecture represented by the nodes, and the set
of interdependencies represented by the links.

For consistency with some previous work [4, 17, 47, 39],
we construct networks from the source code of different Java
projects2 (Table 1). Due to the object-oriented view of
Java language, nodes in the network can represent either
project packages, software classes, methods and functions
or individual lines of code. We here adopt class dependency
networks [39], where nodes represent classes and links cor-
respond to different dependencies among them (Figure 1).
The latter is based on the following reasons. First, as net-
works are constructed merely from the signatures of differ-
ent classes, and functions and fields therein, they are only
mildly influenced by the subjective nature of each individual
developer. (This can be more adequately modeled by, e.g.,
text mining applied to the names of different programming
constructs [20].) Second, mesoscopic structures of class de-
pendency networks coincide with project packages [39, 44],
which enables various applications in software engineering
(Section 4). Third, such networks relate to the information
flow between different parts of software project, and also co-
incide with the human comprehension of the object-oriented
software systems.

Note that class dependency networks address only the

2Networks are available from http://lovro.lpt.fri.uni-lj.si/.

inter-class structure of the software project, whereas the
intra-class dependencies are disregarded. However, similarly
as above, the latter reflect also the programming style of a
particular developer, rather than the intrinsic structure of
the software project alone. Nevertheless, future work will
extend the study to inter- and intra-class dependencies us-
ing to concepts of interdependent or coupled networks [26,
15].

Formally, let a project consist of classes A = {A1, A2, . . . }
and let P be the set of software packages (bottom-most
level of the package hierarchy). Corresponding class depen-
dency network is then a directed graph G(N,L), with nodes
N = {1, . . . , n} and links L (m = |L|). Node i corresponds
to a class Ai, however, since isolated nodes are discarded in
the analysis, n ≤ |A|. A directed link (i, j) ∈ L represent
some dependency between classes Ai and Aj : inheritance
(Ai inherits or implements Aj), parameter (Ai contains a
method, function or constructor that takes Aj as parame-
ter), return (Ai contains a method or function that returns
Aj) and field (Ai contains a field of type Aj). Denote k
to be the average degree in the network (i.e., average num-
ber of links incident to a node). Furthermore, let kin and
kout be the average in-degree and out-degree of the nodes,
k = kin + kout. Hence, kouti corresponds to a number of
other classes required to implement the functionality of a
respective class Ai, while kini corresponds to the number of
classes that use (depend on) Ai. Last, denote LCC to be
the fraction of nodes in the largest connected component3.

Table 1 shows properties of class dependency networks
used in the study. Networks were selected thus to represent
a diverse set of software systems including utility libraries

3All networks in figures are reduced to LCC-s.

http://lovro.lpt.fri.uni-lj.si/


Figure 2: Degree distributions of weka, javax and java networks.

Table 2: Different statistics for class dependency networks used in the study.

Network γ C D CER l E lER nd/n
flmng 3.0 0.25 0.31 0 .03 4.05 0.03 3 .47 0.38
colt 2.7 0.41 0.47 0 .02 3.44 0.03 3 .16 0.30
jung 2.5 0.37 0.42 0 .01 4.19 0.02 3 .88 0.48
org 2.2 0.57 0.62 0 .01 2.68 0.03 2 .81 0.39

weka 3.0 0.39 0.43 0 .01 2.91 0.01 3 .39 0.12
javax 2.6 0.38 0.44 0 .00 3.88 0.02 3 .16 0.30
java 2.4 0.69 0.73 0 .01 2.18 0.02 3 .09 0.17

(e.g., flmng and colt networks), complete frameworks (e.g.,
jung and weka networks) and also the core of Java language
itself (i.e., java network).

Software networks are compared against Erdös-Rényi ran-
dom graphs [12], where a link are placed between each pair
of n nodes with probability k/(n− 1), where k = 2m/n for
some n and m.

3. ANALYSIS AND DISCUSSION

3.1 Scale-free networks – software complexity
and reusability

Simple random graphs experience a Poisson degree dis-

tribution pk, pk ∼ λke−λ

k!
. On the contrary, pk of most

real-world networks including software networks follows a
power-law form pk ∼ k−γ [3, 35, 31, 9], where γ is a scale-
free exponent, γ > 1. The latter can be clearly observed by
a straight line with slope −γ in a log-log plot (Figure 2).
Networks with power-law degree distributions are denoted
scale-free, while γ can be directly related to the spreading
processes occurring on networks [32] (e.g., bug propagation).
For γ ∈ (2, 3), even a very small fraction of faulty nodes can
already render the entire system inapplicable [30, 32]. Un-
fortunately, the latter applies for all software networks used
here (Table 2).

Scale-free networks are usually considered an artifact of
Yule’s process or rich get richer phenomena [3]. For class
dependency networks, this refers to the fact that highly used
classes are, obviously, well known among developers, and
would thus also be more commonly adopted in the future.
However, power-laws should thus emerge merely in the in-
degree distribution pink that refers to the number of times
each class is used [36, 4] (Figure 2). More precisely, scale-
free nature of pink is a result of high code reusability. On
the other hand, out-degree distribution poutk is related to

software complexity, since classes with high kouti encompass
most complex functionality. Here, complexity refers to the
number of other classes needed to implement the function-
ality of the respective class. For example, most commonly
reused class in java network is String, whereas FileDialog
is the most complex one (Table 3).

Well developed software project should thus exhibit scale-
free pink and highly truncated poutk . Next, lower γ indicates
higher code reuse, which also decreases the probability of
fault propagation throughout the system. Last, classes with
very high kouti , and also kini , should be implemented with
extra care (see Section 3.3).

3.2 Small-world networks – software structure
and design

Software networks exhibit small-world phenomena [46] (see
[27, 38] and Table 2), which refers to high clustering C [46]
and very short average distance between the nodes l [1] (also
known as six degrees of separation [25]). C measures tran-
sitivity in the network, and is defined as the probability
that two neighbors of a node are also linked, C ∈ [0, 1].
l = 1

n(n−1)

∑
i 6=j dij , where dij is the distance between i in

j in the respective undirected network (i.e., number of links
in the shortest path). Small-world networks most commonly
refer to C � CER and l ≈ lER [46], where CER and lER are
the values for a corresponding random graph.

Clustering of software networks can be related to intrinsic
characteristics of the underlying systems [43]. For instance,
visualization classes usually experience very high clustering,
while clustering is almost zero for I/O classes [43, 40].

Average distance l is an important indicator of the struc-
tural design of the project, or projects, represented by the
network. More precisely, since l ≈ lER, l � lER indicates
that the underlying software system has divided into several
independent parts with rather different functionality (Fig-



Figure 3: A random graph, jung network, jung & colt network and jung & java network. Average distance
between the nodes l equals 3.88, 4.19, 5.37 and 2.18. Node symbols correspond to clustering D [33] that ranges
between 0 (triangles) and 1 (circles).

Figure 4: weka, javax and java networks with highlighted seed nodes.

ure 3). Note also that software networks should never be
combined with the core of the language, since the latter
completely obscures its structure and dynamics.

It ought to be mentioned that software networks are small-
world only in the undirected case [19]. The contrary would
imply a cyclic flow of information within the software project.
For instance, high-level Java class String does not use the
functionality of a lower-level FileDialog. Let E be the ef-
ficiency of network information flow [22] defined as E =

1
n(n−1)

∑
i 6=j 1/d′ij , where d′ij is the distance from i to j in

a (directed) network, E ∈ [0, 1]. Small-worlds should result
in high flow efficiency E, however, software networks have
E ≈ 0 (Table 2).

Well designed software project should thus experience C �
CER, l ≈ lER and E ≈ 0. Also, one should be wary of
l� lER throughout the project development.

3.3 Network nodes – software vulnerability and
control

In the context of spreading processes on software net-
works [28, 45] (e.g., bug propagation) and network robust-
ness [2, 32] (i.e., software vulnerability), one is interested
into so called seed nodes that could originate the propaga-
tion of faults through the entire system4. Centrality metrics
that measure nodes influence are commonly regarded as a
prominent indicator of seed nodes [13, 14]. Denote DCi
to be the degree centrality defined as DCi = ki/(n − 1),

4Although a poor implementation of any software class al-
ready makes the system vulnerable, the problem is even am-
plified in the case of, e.g., highly reused classes.

where ki is the degree of node i, DCi ∈ [0, 1]. Next, denote
CCi to be the harmonic closeness centrality defined as the
average inverse of distance from i to the rest of the nodes,
CCi = 1

n−1

∑
i 6=j 1/d′ij , CCi ∈ [0, 1]. Last, denote BCi to be

the betweenness centrality defined as the fraction of shortest
paths between the nodes that go through i, BCi ∈ [0, 1].

As ki ≈ kini for software networks, DCi actually identi-
fies classes with the highest code reuse or, equivalently, high
in-degree kini (Table 3). Similar set of influential classes is re-
ported by BCi (Table 4). On the other hand, CCi identifies
classes that somewhat coincide with high complexity classes
identified in Section 3.1. BCi (and DCi) thus reveals classes
whose faulty implementation could influence the entire sys-
tem, whereas CCi exposes classes that are most prone to
an arbitrary fault within the system. The former commonly
reside in the core of the respective software network, while
the latter are found in the periphery (Figure 4).

Extra care should be put in the development of classes
with high BCi, while high CCi classes can be adopted for
an effective, and also efficient, software testing.

Network controllability has just recently been proposed for
the analysis of directed real-world networks [24, 23]. Here,
one is particularly interested in the number of driver nodes
nd that one has to govern in order guide the entire sys-
tem [23] (i.e., gain control over the output of the system
under the assumption of simple linear transformations). For

scale-free networks with pink equal to poutk , nd/n ≈ ek(γ−2)/(2−2γ),
γ > 2 [23]. Note that, contrary to seed nodes (Table 4)
and general belief, driver nodes tend to avoid high degree
nodes [23, 11].



Table 3: Hubs (i.e., nodes with very high degree) within weka, javax and java networks.
weka javax java

Node kini kouti Node kini kouti Node kini kouti

Instances 541 5 JComponent 235 11 String 1308 7
Instance 381 4 Accessible 222 1 Class 1288 4

Capabilities 304 4 ComponentUI 175 2 Object 1228 1
ClassAssigner 0 19 JTable 6 37 FileDialog 0 59

Filter 0 19 JTextPane 0 30 Frame 4 58
Classifier 0 18 JMenu 1 26 Dialog 5 57

Table 4: Seed nodes (i.e., very influential nodes) within weka, javax and java networks.
weka javax java

Node CCi BCi Node CCi BCi Node CCi BCi
PredictionAppender 0.03 0.00 DefaultCellEditor 0.10 0.00 FileDialog 0.09 0.00

Classifier 0.03 0.01 JTable 0.10 0.12 Dialog 0.09 0.00
Filter 0.03 0.00 JTextPane 0.09 0.08 Frame 0.09 0.00

Instances 0.01 0.51 JComponent 0.04 0.23 String 0.02 0.36
RevisionHandler 0.00 0.26 Accessible 0.01 0.18 Object 0.02 0.32

Instance 0.01 0.13 PrintService 0.02 0.17 Class 0.02 0.26

Most software network are not highly controllable, since
one would have to manage 30-50% of classes in order to con-
trol the entire project (Table 2). Nevertheless, due to high
density, the core of Java language can be controlled through
merely 17% of classes in java namespace. For comparison,
nd/n equals ≈ 80% for regulatory networks, ≈ 50% for the
Internet, ≈ 30% for power grids and on-line social networks,
while, interestingly, it is below 3% for corporate ownership
networks [23].

Controllability of a software system can be limited by de-
creasing k or γ, which is achieved by decreasing code com-
plexity and increasing code reuse (Section 3.1).

3.4 Network modules – software aggregation
and modularity

Packages of the software system reflect in different struc-
tural modules within class dependency networks [39, 44].
For instance, visualization classes commonly aggregate into
communities of densely connected nodes [16], whereas dif-
ferent parsers, transformers or plugins often arrange into
functional modules [43] that correspond to (disconnected)
groups of nodes with common linkage patterns. Otherwise,
clear community structure signifies highly modular struc-
ture of the respective software system, while well supported
functional modules are related to clear functional roles of
the classes within the project [39, 44, 43].

Table 5 compares software packages against network mod-
ules identified with MO [8] and CP [42, 41] community de-
tection approaches, and MM [29] and GP [44, 43] struc-
tural module identification algorithms. Analysis reveals that
general structural modules including communities and func-
tional modules most accurately model the package structure
of the software systems in this study.

4. APPLICATIONS
Due to space limitations, the following section only briefly

describes different applications of network analysis techniques
presented in Section 3. Future work will focus on a more
detailed examination and development of supporting imple-

mentations that could be easily applied in practice.

4.1 Software project abstraction
Figure 5 shows an application of network structural mod-

ule detection to software project abstraction. One can iden-
tify an entire hierarchy of modules that is consistent with the
package hierarchy, while also enclosing class dependencies
that go beyond packages decided by the developers. Besides
better comprehension, revealed hierarchy enables the predic-
tion of dependencies between the classes of a project [43].

4.2 Software packages refactoring
Network module detection algorithms can also be applied

for refactoring of software packages [39, 43]. One can adopt
a community detection algorithm to reveal highly modular
structure (Figure 6, (left)) or a functional module detec-
tion algorithm to identify the underlying functional struc-
ture (Figure 6, (middle)). General structural module detec-
tion algorithms partition software classes according to both
modular and functional links that are present among the
dependencies of the project (Figure 6, (right)).

4.3 Software packages prediction
Table 6 shows classification accuracies for the prediction

of software packages for the classes of different systems. Let
i be a node corresponding to class Ai. Package of Ai is
then predicted to be the most likely package considering
nodes within the same structural module as i. The nodes
are weighted according to Jaccard similarity [18], which is
defined as |Γi ∩ Γj |/|Γi ∪ Γj |, where j is a similar node and
Γi is the neighborhood of node i. Structural modules are
identified with the algorithm in [44, 43].

On average, one can predict software packages with ≈
80% probability for most classes of the systems considered,
whereas complete package hierarchy can be precisely identi-
fied for over 60% of the software classes (Table 6).

4.4 Software quality indicators
Table 7 and Table 8 show software project and class qual-



Figure 5: (left) jung network where node symbols represent high-level packages of JUNG framework: visu-

alization (circles), io (triangles), graph (squares) and algorithms (diamonds). (right) Hierarchy of structural
modules revealed with the algorithm in [43].

Figure 6: (left) Communities representing highly modular structure of the software system [42, 41]. (mid-
dle) Functional modules that represent highly functional partitioning of the system [44, 43]. (right) General
structural modules conveying modular and functional links (bottom-most level of the hierarchy in Figure 5).

Table 5: Normalized mutual information [10] (NMI) between software packages and identified network mod-
ules, NMI ∈ [0, 1]. Number of modules is shown in small font.

Network MO CP MM GP
flmng 16 0.580 14 0.609 27 0.521 16 0.610 26

colt 19 0.519 10 0.473 20 0.533 19 0.530 26

jung 39 0.614 13 0.650 30 0.661 39 0.680 41

org 47 0.503 11 0.537 30 0.378 39 0.536 33

weka 81 0.558 26 0.410 49 0.430 63 0.314 28

javax 107 0.704 59 0.761 155 0.392 89 0.747 192

Table 6: Classification accuracy (CA) for software package prediction, CA ∈ [0, 1]. (l∞ is the number of levels
of the package hierarchy, whereas l is the average level for a software class. Value under Pi corresponds to
CA for the i-th level of the hierarchy.)

Network l l∞ P P4 P3 P2 P1

flmng 2.65 4 0.566 ← 0.572 0 .793 1.000
colt 3.35 4 0.654 ← 0 .756 0.942 1.000
jung 2.97 4 0.617 ← 0.663 0 .857 1.000
org 3.50 7 0.616 0.616 0 .714 0.989 1.000

weka 3.02 6 0.684 0.692 0 .736 0.871 1.000
javax 3.11 5 0.626 0.631 0 .816 0.982 1.000



Table 7: Software project quality indicators presented in the study. For each indicator, we give the range
and the expected value of a well designed software system (based on Section 3).

Quality indicator Expected value Range Comment

pink ∼ k−γin γin > 1
High code reusability (Section 3.1).

kin � 0 ∞
poutk � k−γout γout > 1

Low code complexity (Section 3.1).
kout � n ∞
D � 0, � 1 [0, 1] Characteristics of the project domain [43].

l − lER ≤ 0 ∞ Well structured and designed project (Section 3.2).
E ≈ 0 [0, 1] Low efficiency of information flow (Section 3.2).

nd/n � 0 [0, 1] Low project controllability (Section 3.3).
γ � 3 > 1 Low project vulnerability, high robustness (Section 3.1).

Table 8: Software class indicators presented in the study. For each indicator, we give the range and the
expected value of highly influential, most vulnerable or high complexity classes (based on Section 3).

Class indicator Expected value Range Comment
DC, BC � 0 [0, 1]

Highly influential seed classes (Section 3.3).
CC Highly vulnerable seed classes (Section 3.3).

kin � 0 ∞ Highly influential hub classes (Section 3.1).
kout High complexity hub classes (Section 3.1).

ity indicators identified in the study. Indicators can be em-
ployed to assess project structure and design, code complex-
ity and reusability, controllability and vulnerability, infor-
mation flow, and other. Due to space limitations, compari-
son with other approaches for measuring software quality is
omitted (e.g., metrics of coupling and cohesion [34]).

5. CONCLUSIONS
The paper conducts a comprehensive study of software

networks constructed from Java source code. First, we ad-
dress macroscopic network properties that are related to
structural design of the corresponding software project. Next,
we analyze the networks on a microscopic level of nodes, to
highlight most influential and vulnerable software classes.
Last, we analyze mesoscopic network structural modules
and expose their applicability in project refactoring. Among
other, we show that software systems are highly vulnerable
to processes like bug propagation, however, they are not eas-
ily controllable. On the other hand, Java language can be
controlled through merely 17% of java namespace. We also
identify several network-based quality indicators that can be
employed to assess software project design, reusability, ro-
bustness, controllability and other. The study thus exposes
network analysis as a prominent set of tools for software
systems engineering.

6. ACKNOWLEDGMENTS
This work has been supported by the Slovene Research

Agency ARRS within Research Program No. P2-0359.

7. REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.

Network flows: Theory, algorithms, and applications.
Prentice-Hall, Upper Saddle River, NJ, 1993.

[2] R. Albert, H. Jeong, and A. L. Barabasi. Error and
attack tolerance of complex networks. Nature,
406(6794):378–382, 2000.

[3] A. L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512, 1999.

[4] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith,
M. Visser, H. Melton, and E. Tempero. Understanding
the shape of java software. In Proceedings of the ACM
International Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 397–412, 2006.

[5] B. Beizer. Software testing techniques. Van Nostrand
Reinhold Co., New York, NY, USA, 1990.

[6] K. Cai and B. Yin. Software execution processes as an
evolving complex network. Information Sciences,
179(12):1903–1928, 2009.

[7] E. M. Clarke, O. Grumberg, and D. Peled. Model
checking. MIT Press, 2000.

[8] A. Clauset, M. E. J. Newman, and C. Moore. Finding
community structure in very large networks. Physical
Review E, 70(6):066111, 2004.

[9] G. Concas, M. Marchesi, S. Pinna, and N. Serra.
Power-laws in a large object-oriented software system.
IEEE Transactions on Software Engineering,
33(10):687–708, 2007.

[10] L. Danon, A. Dı́az-Guilera, J. Duch, and A. Arenas.
Comparing community structure identification.
Journal of Statistical Mechanics: Theory and
Experiment, P09008, 2005.

[11] M. Egerstedt. Complex networks: Degrees of control.
Nature, 473(7346):158–159, 2011.

[12] P. Erdős and A. Rényi. On random graphs i.
Publicationes Mathematicae Debrecen, 6:290–297,
1959.

[13] L. Freeman. A set of measures of centrality based on
betweenness. Sociometry, 40(1):35–41, 1977.

[14] L. C. Freeman. Centrality in social networks:
Conceptual clarification. Social Networks,
1(3):215–239, 1979.

[15] J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin.



Networks formed from interdependent networks.
Nature Physics, 8(1):40–48, 2012.

[16] M. Girvan and M. E. J. Newman. Community
structure in social and biological networks.
Proceedings of the National Academy of Sciences of
United States of America, 99(12):7821–7826, 2002.

[17] D. Hyland-Wood, D. Carrington, and S. Kaplan.
Scale-free nature of java software package, class and
method collaboration graphs. In Proceedings of the
International Symposium on Empirical Software
Engineering, pages 1–10, 2006.

[18] P. Jaccard. Étude comparative de la distribution
florale dans une portion des alpes et des jura. Bulletin
del la Société Vaudoise des Sciences Naturelles,
37:547–579, 1901.

[19] G. A. Kohring. Complex dependencies in large
software systems. Advances in Complex Systems,
12(6):565–581, 2009.

[20] A. Kuhn, S. Ducasse, and T. Gı̂rba. Semantic
clustering: Identifying topics in source code.
Information and Software Technology, 49(3):230–243,
2007.

[21] N. LaBelle and E. Wallingford. Inter-package
dependency networks in open-source software. e-print
arXiv:cs/0411096v1, 2004.

[22] V. Latora and M. Marchiori. Efficient behavior of
small-world networks. Physical Review Letters,
87(19):198701, 2001.

[23] Y. Liu, J. Slotine, and A. Barabasi. Controllability of
complex networks. Nature, 473(7346):167–173, 2011.

[24] A. Lombardi and M. Hörnquist. Controllability
analysis of networks. Physical Review E, 75(5):056110,
2007.

[25] S. Milgram. The small world problem. Psychology
Today, 1(1):60–67, 1967.

[26] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter,
and J. Onnela. Community structure in
time-dependent, multiscale, and multiplex networks.
Science, 328(5980):876–878, 2010.

[27] C. R. Myers. Software systems as complex networks:
Structure, function, and evolvability of software
collaboration graphs. Physical Review E, 68(2), 2003.

[28] G. M. Narayan, K. Gopinath, and V. Sridhar.
Structure and interpretation of computer programs. In
Proceedings of the IEEE International Symposium on
Theoretical Aspects of Software Engineering, 2008.

[29] M. E. J. Newman and E. A. Leicht. Mixture models
and exploratory analysis in networks. Proceedings of
the National Academy of Sciences of United States of
America, 104(23):9564, 2007.

[30] R. Pastor-Satorras and A. Vespignani. Epidemic
spreading in scale-free networks. Physical Review
Letters, 86(14):3200–3203, 2001.

[31] A. Potanin, J. Noble, M. Frean, and R. Biddle.
Scale-free geometry in OO programs. Communications
of the ACM, 48(5):99–103, 2005.

[32] S. Sinha. Few and far between. Physics, 4:81, 2011.

[33] S. N. Soffer and A. Vázquez. Network clustering
coefficient without degree-correlation biases. Physical
Review E, 71(5):057101, 2005.

[34] W. P. Stevens, G. J. Myers, and L. L. Constantive.

Structured design. IBM Systems Journal,
38(2):231–256, 1999.

[35] S. Valverde, R. F. Cancho, and R. V. Solé. Scale-free
networks from optimal design. Europhysics Letters,
60(4):512, 2002.

[36] S. Valverde and R. V. Solé. Logarithmic growth
dynamics in software networks. Europhysics Letters,
72(5):858–864, 2005.

[37] S. Valverde and R. V. Solé. Network motifs in
computational graphs: A case study in software
architecture. Physical Review E, 72(2):026107, 2005.

[38] S. Valverde and R. V. Solé. Hierarchical small worlds
in software architecture. Dynamics of Continuous,
Discrete and Impulsive Systems - Series B, 14:1–11,
2007.

[39] L. Šubelj and M. Bajec. Community structure of
complex software systems: Analysis and applications.
Physica A: Statistical Mechanics and its Applications,
390(16):2968–2975, 2011.

[40] L. Šubelj and M. Bajec. Generalized network
community detection. In Proceedings of the ECML
PKDD Workshop on Finding Patterns of Human
Behaviors in Network and Mobility Data, pages 66–84,
Athens, Greece, 2011.

[41] L. Šubelj and M. Bajec. Robust network community
detection using balanced propagation. European
Physical Journal B, 81(3):353–362, 2011.

[42] L. Šubelj and M. Bajec. Unfolding communities in
large complex networks: Combining defensive and
offensive label propagation for core extraction.
Physical Review E, 83(3):036103, 2011.

[43] L. Šubelj and M. Bajec. Clustering assortativity,
communities and functional modules in real-world
networks. e-print arXiv:12023188v1, 2012.

[44] L. Šubelj and M. Bajec. Ubiquitousness of link-density
and link-pattern communities in real-world networks.
European Physical Journal B, 85(1):32, 2012.

[45] J. Wang and Y. Liu. Modeling software faults
propagation. Europhysics Letters, 92(6):60009, 2010.

[46] D. J. Watts and S. H. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393(6684):440–442,
1998.

[47] L. Wen, D. Kirk, and R. G. Dromey. Software systems
as complex networks. In Proceedings of the IEEE
International Conference on Cognitive Informatics,
pages 106–115, 2007.


	Introduction
	Software networks
	Analysis and discussion
	Scale-free networks – software complexity and reusability
	Small-world networks – software structure and design
	Network nodes – software vulnerability and control
	Network modules – software aggregation and modularity

	Applications
	Software project abstraction
	Software packages refactoring
	Software packages prediction
	Software quality indicators

	Conclusions
	Acknowledgments
	References

