NETWORK GROUP DISCOVERY BY
HIERARCHICAL LABEL PROPAGATION

Lovro Subelj & Marko Bajec
University of Ljubljana

EUSN '14



GROUPS IN NETWORKS
GROUP DETECTION BY PROPAGATION
EMPIRICAL ANALYSIS & COMPARISON

CONCLUSIONS



NODE GROUPS

other mixtures of these

Community densely linked nodes sparsely linked between (Girvan and Newman, 2002)

module nodes linked to similar other nodes (Newman and Leicht, 2007)
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GROUP FORMALISM

S is group of nodes and T its linking pattern. (Subejj et al., 2013)

Community (s=T) Mixture (s = T) Module (s # 1)

S is shown with filled nodes, T is shown with marked nodes.
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LABEL PROPAGATION

Label propagation algorithm: (raghavan et al., 2007)

g = argmax ) _0(g), )
Jer;

g; is group label of node i and I'; are its neighbors.

# Iterations = 13 # Groups = 2 Accuracy = 100.0 %

Algorithm has near linear complexity O(m), where m is number of links.



BALANCED PROPAGATION

Balanced propagation algorithm: (subelj and Bajec, 20112)

g = argmgax; bj- (g, g) bi=—i
J i

b; is balancer of node i and t; € (0, 1] is its normalized index.

Node balancer b

0 02 04 06 08 1
Node index t

# Partitions found in Zachary network in 1000 runs drops from 184 to 19.



ADVANCED PROPAGATION

Defensive propagation algorithm: (Subelj and Bajec, 2011b)

g = argmax > _ pjb; - 3(g;. &)
JEr;

p; is probability that random walker on group g; visits node /.

By degrees Defensive Offensive

Defensive algorithm has high recall, offensive algorithm has high precision.



GENERAL PROPAGATION

General propagation algorithm: (3ubelj and Bajec, 2012)

R . Module detection
Community detection

p;bx
g =argmax [ 7> pibj-0(gj.8)+ (1—7g) Y =~ g8
Jer; JET; J
KET\T;

ki is degree of node i and 75 € [0, 1] is parameter of group g.
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Group parameters T have to be set accordingly (conductance, clustering).



HIERARCHICAL PROPAGATION

Hierarchical propagation algorithm: (3ubeij and Bajec, 2014)
1

if dj > p and (d) > p
Tg; = 4§ 0 if di<pand(d)<p
0.5 else

d; is corrected clustering of node i and p is clustering of configuration model.

Communities are in dense parts (d >> 0), modules are in sparse parts (d =~ 0).
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HIERARCHICAL PROPAGATION (I1)

Hierarchical propagation algorithm: (3ubeij and Bajec, 2014)
» group detection by propagation — communities
» bottom-up group agglomeration — hierarchy

» top-down group refinement — modules

Alternative group hierarchies are compared by maximum likelihood.
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SOCIAL NETWORKS

Node shapes show sociological division into groups, (Girvan and Newman, 2002)

shades of inner nodes of hierarchy are proportional to link density.
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SOFTWARE NETWORKS

Node shapes show developer division into packages, (0'Madadhain et al., 2005)

shades of inner nodes of hierarchy are proportional to link density.
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REAL-WORLD NETWORKS

Label propagation algorithm (LPA), multi-stage modularity optimization or Louvain method (LUV), random walk
compression or Infomap (IMP), k-means data clustering (KMN), mixture model with expectation-maximization

(EMM) and hierarchical propagation algorithm (HPA).

Community detection Group detection
LPA LUV IMP KMN EMM HPA

0.892 0.876 0.922 0.845 0.823 0.909
0.796 0.771 0.890 0.698 0.683 0.850
0.184 0.309 0.417 0.677 0.827 0.932
0.093 0.174 0.273 0.560 0.720 0.936

Normalized Mutual Information and Adjusted Rand Index

American football network

Southern women network



SYNTHETIC NETWORKS

Greedy optimization of modularity (GMO), multi-stage modularity optimization or Louvain (LUV), sequential clique

percolation (SCP), Markov clustering (MCL), structural compression or Infomod (IMD), random walk compression

or Infomap (IMP), label propagation algorithm (LPA) and hierarchical propagation algorithm (HPA).

Mixing parameter 1

4 communities
(Girvan and Newman, 2002)
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Mixing parameter 1

> 10 communities
(Lancichinetti et al., 2008)



SYNTHETIC NETWORKS (II)

Symmetric nonnegative matrix factorization (NMF), k-means data clustering (KMN), (degree-corrected) mixture
model (EMM & DMM), structural compression or Infomod (IMD) and random walk compression or Infomap

(IMP), model-based propagation algorithm (MPA) and hierarchical propagation algorithm (HPA).

Normalized Mutual Information
Normalized Mutual Information

Mixing parameter p Mixing parameter p
2 communities & bipartite modules 3 communities & tripartite modules
(Subelj and Bajec, 2012) (Subelj and Bajec, 2014)
o = = = =
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CONCLUSIONS

Hierarchical propagation algorithm: (Subelj and Bajec, 2014)
» non-overlapping community and module detection
» easy to implement or extend with domain knowledge

» benefits in group detection, hierarchy discovery, link prediction

Community CHECK Module
detection — COMMUNITIES —  detection
Infomap corrected clustering data clustering
(Rosvall and Bergstrom, 2008) (Soffer and Vézquez, 2005) (Lin et al., 2010)
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